

SAIL Seminar 2023

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information

Masato Tamura¹, Hiroki Ohashi², Tomoaki Yoshinaga¹ Lumada Data Science Lab¹, Center for Technology Innovation²

IEEE/CVF Conference on CVPR. 2021

2023.10.30

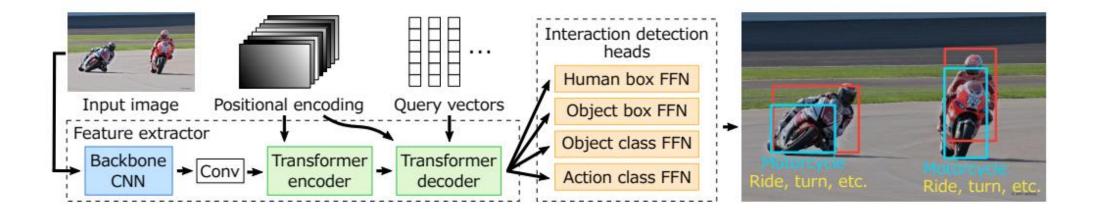
순천향대학교 미래융합기술학과

석사과정 김병훈

Experiments

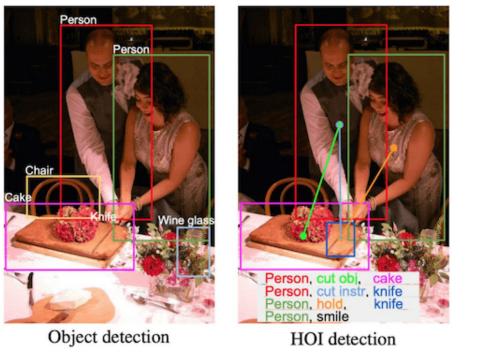
QPIC

- ✓ This is the first work to use Attention- and Query-based methods in the HOI(Human-Object Interaction)
- ✓ Used DETR(End-to-End Object Detection with Transformers) as a base detector and extend it for HOI detector
- ✓ The feature extractor consists of an off-the-shelf CNN backbone network and a transformer base.



What is HOI(Human-Object Interaction)

- ✓ The task of detecting interactions between objects
- ✓ Further to object detection, add the process of finding interaction associations



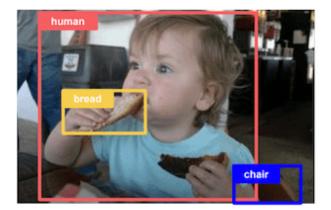
HOI detection Classification Localization Interaction Association

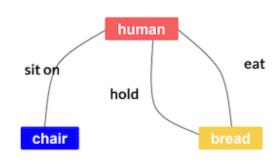
Find triplet

<human, object, interaction>

Object detection Classification Localization

What is HOI(Human-Object Interaction)





 $\begin{array}{l} {\rm Set}\{\,({\rm bbox_1}^{{\rm human}},{\rm bbox_1}^{{\rm obj}},\\ {\rm Interaction_1}),\,({\rm bbox_2}^{{\rm human}},{\rm bbox_2}^{{\rm obj}},\\ {\rm Interaction_2}),\,({\rm bbox_3}^{{\rm human}},{\rm bbox_3}^{{\rm obj}},\\ {\rm Interaction_3})\} \end{array}$

bboxes^{human}, bboxes^{obj}

{Human, Chair, Sit on} {Human, Bread, Hold} {Human, Bread, Eat}

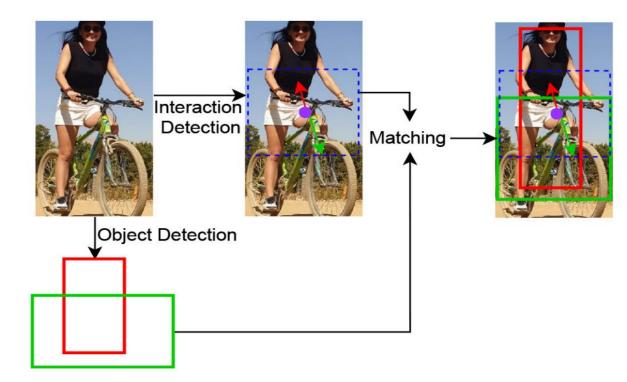
Previous HOI detector(two-stage methods)

- ✓ Consists of Stage One (Object Detection) and Stage Two (Interaction Prediction)
- The process is to detect all the objects in the image and then use a neural network to find all the parallel interaction scores.



Previous HOI detector(single-stage methods)

- ✓ It uses a matching method that performs object detection and interaction detection in parallel.
- ✓ Use interaction boxes or union boxes to reduce inference time while maintaining performance.



[Representative models]

PPDM, CenterNet

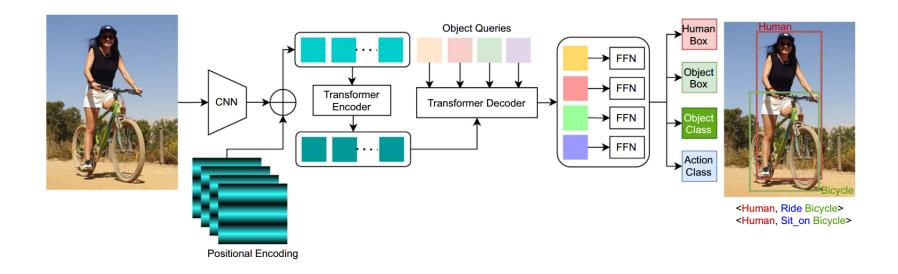
[Limitation]

1. Images are missing contextual features

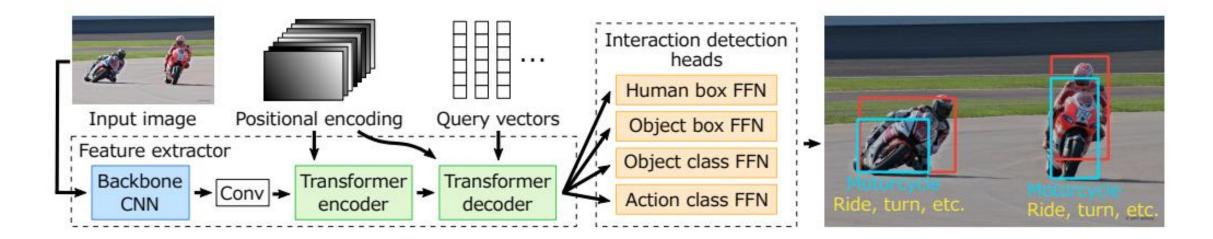
2. Requires additional post-processing steps or heuristic thresholding

Transformer based method

- Transformers have had success with Natural Language Processing (NLP) and recently applied to images with image transformers.
- ✓ Attention mechanisms can be used to extract overall features of an image.
- ✓ It consists of an encoder and a decoder to predict the hoi triplet at once.



Overall Architecture

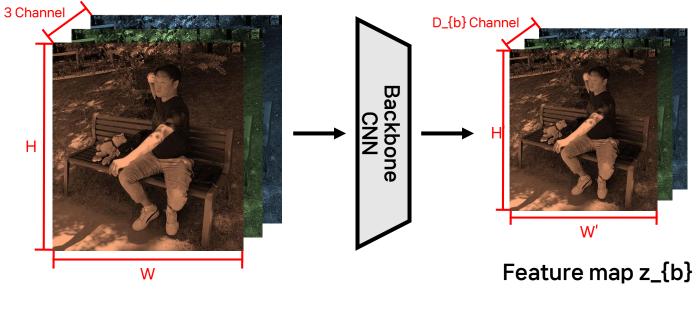


The sections are presented in two parts:

- 1. Feature Extractor
- 2. interaction detection head.

Feature Extraction (backbone network)

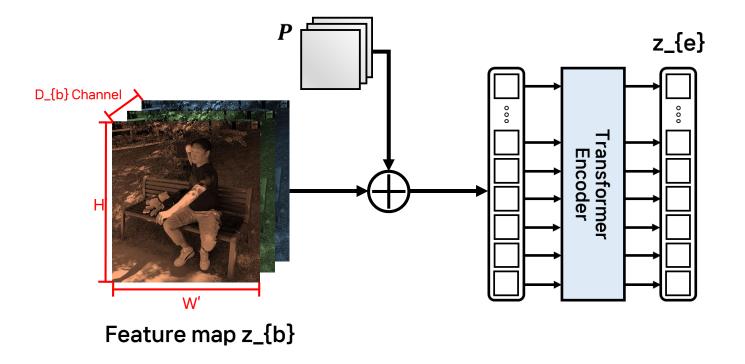
Given an input image $x \in \mathbb{R}^{3 \times H \times W}$, it is calculated as a feature map $z_b \in \mathbb{R}^{D_b \times H' \times W'}$ using off-the-shelf backbone network, where H and W are the height and width of the input image, H' and W' those the output feature map, and D_b is the number of channels. Typically H' < H, W' < W. z_b is then input to a projection convolution layer with a kernel size of 1 × 1 to reduce the dimension from D_b to D_c .



Input image X

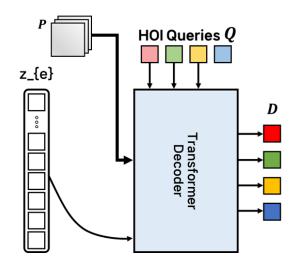
Feature Extraction (Transformer Encoder)

The transformer encoder takes as input a feature map $z_b \in \mathbb{R}^{D_c \times H' \times W'}$ and a fixed positional encoding $p \in \mathbb{R}^{D_c \times H' \times W'}$ that contains positional information. Then, it extracts a feature map that is rich in contextual information using a self-attention mechanism. The encoded feature map is $z_e \in \mathbb{R}^{D_c \times H' \times W'}$, which can be obtained via $z_e = f_{enc}(z_c, p)$. where $f_{enc}(\cdot, \cdot)$ is a set of stacked transformer encoder layers.

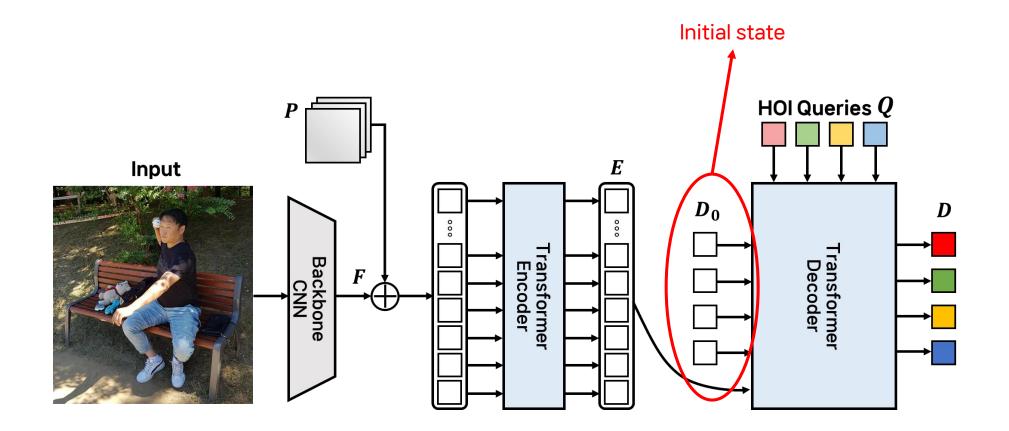


Feature Extraction (Transformer Decoder)

The transform decoder takes as input the encoder output $z_e \in \mathbb{R}^{D_c \times H' \times W'}$, a learnable query vector $Q = \{q_i | q_i \in \mathbb{R}^{D_c}\}_{i=1}^{N_q}$ and a positional encoding p containing spatial information. Then, it outputs an embedding vector $D = \{d_i | d_i \in \mathbb{R}^{D_c}\}_{i=1}^{N_q}$ containing image-wide contextual information for HOI detection. One query vector q_i is designed to contain at most one human-object pair and an interaction between them, which means that the number of queries N_q is always larger than the number of human-object pairs in the image. The decoded embeddings are then obtained as $D = f_{dec}(z_e, p, Q)$, where $f_{dec}(\cdot, \cdot, \cdot)$ is a set of stacked transformer decoder layers.



Feature Extraction (Architecture)



Interaction Detection Head

The interaction detection head defines the embedding result D as follows:

- 1. human-bbox vector : $b^{(h)} \in [0.1]^4$
- 2. object-bbox vector : $b^{(o)} \in [0.1]^4$
- 3. object class(one-hot vector): $c \in [0.1]^{N_{obj}}$, N_{obj} is the number of object class
- 4. action class : $a \in [0.1]^{N_{act}}$, N_{act} is the number of action class

Action class is not necessarily a one-hot vector because there may be multiple actions. The vectors listed are input to the 4 heads (f_h , f_o , f_c , f_a), respectively

Interaction Detection Head

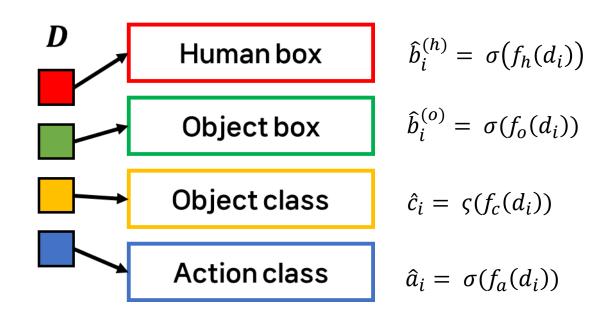
The prediction of normalized follows:

- 1. human-bbox: $\left\{ \hat{b}_{i}^{(h)} \middle| \hat{b}_{i}^{(h)} \in [0,1]^{4} \right\}_{i=1}^{N_{q}}$
- 2. object-bbox: $\left\{ \hat{b}_{i}^{(o)} \middle| \hat{b}_{i}^{(o)} \in [0,1]^{4} \right\}_{i=1}^{N_{q}}$
- 3. probability of object classes: $\{\hat{c}_i | \hat{c}_i \in [0,1]^{N_{obj}+1}, \sum_{j=1}^{N_{obj}+1} \hat{c}_i(j) = 1\}_{i=1}^{N_q}$, where v(j) denotes the *j*-th element of v
- 4. probability of action classes : $\{\hat{a}_i | \hat{a}_i \in [0,1]^{N_{act}}\}_{i=1}^{N_q}$

This predictions are calculated as (σ , ς / sigmoid, softmax):

- $1. \quad \hat{b}_i^{(h)} = \sigma(f_h(d_i))$
- 2. $\hat{b}_i^{(o)} = \sigma(f_o(d_i))$
- 3. $\hat{c}_i = \varsigma(f_c(d_i))$
- 4. $\hat{a}_i = \sigma(f_a(d_i))$

Interaction Detection Head



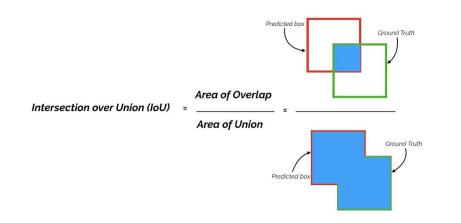
4. Experiments

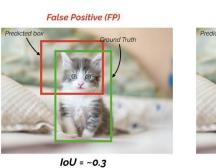
Datasets and Evaluation Metrics

• Datasets

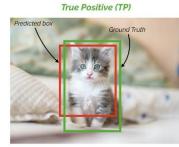
Datasets	Train	Validation	Test	Object class	Action class
V-COCO	2,533	2,867	4,946	80	29
HICO-DET	38,118	-	9,658	80	117

• Evaluation Metrics : mean average precision(mAP)





If IoU threshold = 0.5



IoU = ~0.7

4. Experiments

Comparison to State-of-the-Art

- HICO-DET
 - Default : APs are calculated on the basis of all the test images
 - Known object: each AP is calculated only on the basis of images that contain the object class corresponding to each AP
 - full, rare, non-rare : 600(entire), 138(less than 10), 462(more than 10)
- V-COCO
 - Scenario 1: It should correctly detect the 'no-object' class.
 - Scenario 2 : Ignore the 'no-object' class.

	Default			Known object		
Method	full	rare	non-rare	full	rare	non-rare
FCMNet [20]	20.41	17.34	21.56	22.04	18.97	23.13
ACP [13]	20.59	15.92	21.98	_	_	_
VCL [11]	23.63	17.21	25.55	25.98	19.12	28.03
DRG [4]	24.53	19.47	26.04	27.98	23.11	29.43
UnionDet [12]	17.58	11.72	19.33	19.76	14.68	21.27
Wang et al. [32]	19.56	12.79	21.58	22.05	15.77	23.92
PPDM [17]	21.73	13.78	24.10	24.58	16.65	26.84
Ours (ResNet-50)	29.07	21.85	31.23	31.68	24.14	33.93
Ours (ResNet-101)	29.90	23.92	31.69	32.38	26.06	34.27

Method	Scenario 1	Scenario 2
VCL [11]	48.3	_
DRG [4]	51.0	_
ACP [13]	53.0	_
FCMNet [20]	53.1	-
UnionDet [12]	47.5	56.2
Wang <i>et al</i> . [32]	51.0	-
Ours (ResNet-50)	58.8	61.0
Ours (ResNet-101)	58.3	60.7

HICO-DET

V-COCO

5. Conclusion

Result

- This paper introduces a QPIC that performs the task of predicting HOI using transformer-based DETR.

- It overcomes the limitations of existing single-stage and two-stage methods by using the attention mechanism.

- High performance on HICO-DET and V-COCO, benchmark datasets for HOI task

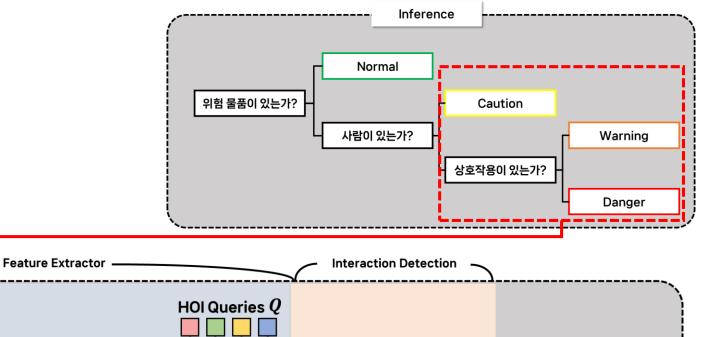
- Provides simple and intuitive detection heads

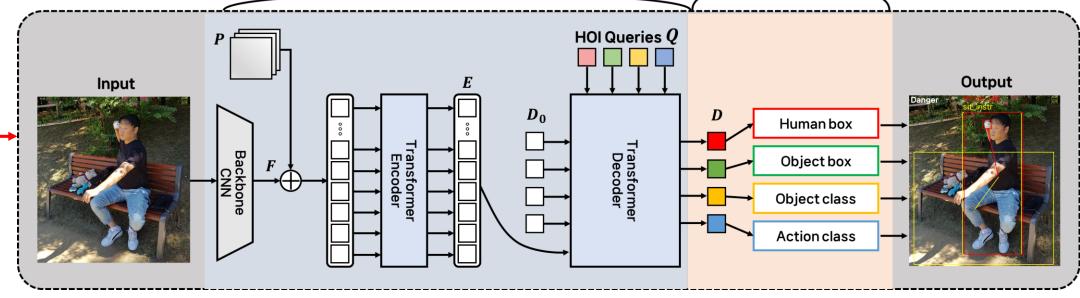
5. Conclusion

How to apply?

[기체 내 위험 상황 정의]

- 1. Normal : 위험 물품 x
- 2. Caution : 위험 물품o, 사람 x
- 3. Warning : 위험 물품o, 사람o, 상호작용 x
- 4. Danger : 위험 물품o, 사람o, 상호작용 o





Thanks