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Surrounding Vehicles’ Lane Change Maneuver
Prediction and Detection for Intelligent

Vehicles: A Comprehensive Review
Ruitao Song and Bin Li

Abstract— Identifying and evaluating the potential risks in
the surrounding environment is critical for intelligent vehicles’
safety and user experience. This paper provides a comprehensive
overview of the state-of-the-art research on the surrounding
vehicles’ lane change maneuver prediction and detection. First,
various driver behavior modeling and classification methods are
reviewed and analyzed, which gives a general understanding
of what the lane change maneuver is and how to predict or
detect the lane change maneuver. Next, the primary sensing
devices equipped on intelligent vehicles and their impacts on
lane change inference systems are discussed. Then, a series
of representative research works in recent years are selected,
introduced, and compared regarding their input feature selec-
tion, inference algorithms, and performance evaluation methods.
Finally, some potential future research directions are proposed.
This paper aims to help the relevant researchers and institutions
summarize the current studies on the surrounding vehicles’ lane
change maneuver inference and recognize its future development
directions.

Index Terms— Autonomous driving, ADAS, lane change infer-
ence, target vehicle, driver intention.

NOMENCLATURE

ACC Adaptive Cruise Control
ACU Accuracy
AD Autonomous Driving
ADAS Advanced Driver-Assistance Systems
ADST Adapting Deceleration to Safety Time
ANOVA Analysis of Variance
ANN Artificial Neural Networks
AUC Area under the Curve
BN Bayesian Network
CNN Convolution Neural Network
DBN Dynamic Bayesian Network
BDRNN Bidirectional Recurrent Neural Network
DLC Discretionary Lane Change
DSRC Dedicated Short Range Communications
EEG Electroencephalogram
GMMs Gaussian Mixture Models
GNSS Global Navigation Satellite Systems
GRU Gated Recurrent Units

Manuscript received 11 September 2020; revised 3 April 2021; accepted
17 April 2021. Date of publication 25 May 2021; date of current version
8 July 2022. The Associate Editor for this article was M. Brackstone.
(Corresponding author: Ruitao Song.)

The authors are with Aptiv Corporation, Troy, MI 48098 USA (e-mail:
songrui1@msu.edu; editorialwork.bli@gmail.com).

Digital Object Identifier 10.1109/TITS.2021.3076164

HD High-Definition
HMM Hidden Markov Models
LSTM Long-Short Term Memory
MLC Mandatory Lane Change
MLP Multi-layer Perceptron
NBC Naive Bayesian Classifier
NGSIM Next Generation Simulation
PRE Precision
TPR True Positive Rate
FPR False Positive Rate
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
SD Standard-Definition
SPMDD Safety Pilot Model Deployment Data
SVM Support Vector Machine
V2I Vehicle-to-Infrastructure
V2V Vehicle-to-Vehicle
V2X Vehicle-to-Everything

I. INTRODUCTION

IN RECENT years, traffic safety has attracted increasing
attention among researchers, industries, and government

organizations. According to a report from the U.S. Department
of Transportation, there were 36,560 people died in motor
vehicle-related crashes in the U.S. in 2018 [1], which means
there were about 100 deaths every day. Human error is
involved in 94 to 96 percent of all motor vehicle crashes.
Therefore, the autonomous driving technology has been
attracting the interest of the researchers for decades.

The autonomous driving or advanced driver-assistance tech-
nology can be traced back to the basic safety features, like
anti-lock brakes and cruise control, equipped on the vehicle in
the last century. Beginning from this century, more advanced
driver assistance technologies, like electronic stability control
and lane departure warning, were being developed to further
improve the safety and reduce the driver load, which also
pave the way to autonomous driving technologies. The Soci-
ety of Automotive Engineers (SAE) has defined six differ-
ent levels of driver assistance technology advancements [2].
Level 0 features can only provide warnings and momentary
assistance, e.g., blind-spot monitoring, emergency braking.
Level 1 and 2 features are able to provide steering or/and
brake/acceleration support to the driver. For Level 3 or higher
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systems, the drivers are not driving when these automated
features are engaged. Level 3 autonomous driving features
require the driver to take over and drive when the features
request. And Level 4 features can drive the vehicle under some
limited conditions, like on the highway, without drivers’ taking
over. Finally, Level 5 features can drive the vehicle everywhere
in all conditions.

Higher-level autonomous driving technology requires better
environment detection capabilities to identify the surrounding
objects and the associated potential risks to the ego vehicle.
For example, the adaptive cruise control (ACC) system needs
to determine when the leading vehicle is going to cut-in or
cut-out of the host lane. A typical autonomous vehicle platform
of Level 3 or higher usually consists of the following parts:
perception, localization, planning, and control. An example is
shown in Fig. 1. Perception is used to detect the surrounding
environment, including pedestrians, vehicles, traffic lights,
traffic signs, etc., to avoid accidents while driving [3]. The
objects around the ego vehicle are composed of both static
and moving objects. Static objects do not change their position
relative to the ground, while moving objects’ position are
changing. To prevent collisions with moving objects, the ego
vehicle needs to not only identify the object’s location at cur-
rent time but also predict the object’s future position. Usually,
more attention should be put on the moving objects, since
the uncertainty of their future position significantly affects
the safety of the autonomous vehicle. Therefore, a prediction
module is usually necessary for Level 3 or higher autonomous
driving platform, as shown in Fig. 1, e.g., Waymo are putting a
lot of effort into surrounding object’s trajectory prediction [4];
Apollo developed by Baidu has a prediction module between
the perception and planning module [5]; and the winner of
the 2007 DARPA Urban Challenge, Boss, has the prediction
functionality inside its perception module [6], [7]. The pre-
diction functionality is sometimes also added into lower level
driver assistant systems for better user experience, e.g., Honda
introduced their intelligent Adaptive Cruise Control (i-ACC)
to the market in 2015 [8]. I-ACC can predict if a vehicle
is about to change from a neighboring lane to the lane of
the ego vehicle, and thus react earlier than conventional ACC
systems to ensure increased safety and comfort. A autonomous
vehicle will have more knowledge of its surrounding envi-
ronment/potential risk and make better decisions if accurate
and early predictions of the surrounding vehicles’ behaviors
are available [9]. A variety of driving maneuvers have been
studied, like lane keeping, lane changing, turning, stopping,
etc. Among them, lane changing can happen in both urban
and highway environments and attracted lots of attention. Car
crashes often occur when traffic participants attempt to change
the lanes [10]. Therefore, good predictions of the surrounding
vehicles’ lane change maneuvers will significantly improve
intelligent vehicles’ safety and passengers’ comfort.

A. Motivation and Contribution

Lane change detection and prediction of the surrounding
vehicles are critical for many features of the autonomous
driving or advanced driver-assistance system (ADAS) on

Fig. 1. Prediction module in general autonomous driving system architec-
ture [5].

intelligent vehicles in a variety of scenarios. There are several
review papers about driver or vehicle behavior prediction.
Xing et al. [11] provide a comprehensive review on the
driver lane change intention prediction for intelligent vehicles.
However, this research focuses on the prediction of ego
vehicle’s behavior, which is very different from the prediction
of the surrounding vehicle’s behavior around the ego vehicle.
A survey on motion prediction and risk assessment is provided
for intelligent vehicles in [12]. In [13], a review of the
deep learning-based vehicle behavior prediction algorithms is
conducted. However, these studies do not specifically focus on
surrounding vehicles’ lane change maneuver prediction.

This paper aims to give the readers an overview of the
state-of-the-art research on the surrounding vehicles’ lane
change inference for intelligent vehicles. We provide detailed
discussion on the basic concepts of lane change prediction and
detection to help the readers to have a better understanding
of the problem itself and the subtle differences among the
different research studies. Moreover, the reviewed studies are
discussed in terms of sensing technology, inference algorithm,
input/output type, etc.

The rest of the paper is organized as follows: First, the basic
concepts of the lane change maneuver are introduced to show
the complexity of lane change maneuver inference and most,
if not all, of the factors that need to be considered. Second,
the sensing and perception systems of intelligent vehicles
are introduced, since the algorithm selection methods and
inference performance are profoundly affected and limited by
the vehicle’s sensing ability. Then, the popular algorithms and
validation methods for lane change maneuver inference are
reviewed and analyzed. Some studies for ego vehicle’s inten-
tion inference can also be used in surrounding vehicles’ lane
change maneuver inference. Therefore, some of these research
works are also mentioned in this paper as a reference. Finally,
some prospects of prediction and detection of surrounding
vehicles’ lane change are also introduced.

II. BASIC CONCEPTS AND PROBLEM FORMULATION

In this paper, the vehicle equipped with autonomous driving,
ADAS systems, or wireless communication devices is referred
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Fig. 2. Example scenarios where lane change inference is critical for the
safety and comfort of the intelligent vehicle.

to as the intelligent vehicle and also the ego vehicle. The
vehicles that are around and have impact on the ego vehicle are
referred to as surrounding vehicles. Please note, the surround-
ing vehicles are not limited to the vehicles on the adjacent
lanes or the ones directly in front or behind the ego vehicle.
The vehicle whose lane change intention is being detected or
predicted by the ego vehicle is called the target vehicle. Target
vehicles are also surrounding vehicles.

Fig. 2 shows two examples when the lane change prediction
and detection performance greatly affecting the safety and
comfort of the intelligent vehicle. Fig. 2 (a) represents a
scenario for the ACC system. The ACC system usually is able
to follow the leading vehicle with a safe distance fairly well
without driver’s interference. However, it becomes challenging
when another vehicle tries to cut-in in front of the intelligent
vehicle from the adjacent lanes. If the ACC system fails
to detect the lane change or cut-in situation early enough,
the intelligent vehicle is likely to crash on the cut-in vehicle
if the driver is not able to take over. Timely recognition of
such situations can facilitate early and smooth reactions of
the system and reduce hand-over situations [14]. Lane change
intention prediction is also critical when the autonomous vehi-
cle is trying to perform a lane change, as shown in Fig. 2 (b).
The autonomous driving system needs to make sure that no
other vehicles are going to change their lanes and move to
the same range in the target lane the intelligent vehicle is
going. Once such a vehicle is detected, the autonomous driving
system should immediately abort the lane change if possible
or perform other evasive maneuvers.

Maneuver detection is a process of analyzing whether a
sequence of actions belongs to a particular maneuver. Maneu-
ver prediction, on the other hand, refers to the prediction
of the maneuver based on a set of incomplete sequence of
actions before the execution of the maneuver. Due to the
limited sensing ability, some intelligent vehicles are not able
to predict the surrounding vehicles’ lane change maneuver
before the maneuver is executed. In many cases, the intelligent
vehicle can only detect the lane change maneuver when the
target vehicle is crossing or even crossed the lane marker [15].
To be more concise and accurate, this paper refers to both
the prediction and detection of lane change maneuver as lane
change maneuver inference.

Fig. 3. Interaction between some of the main factors that affecting the target
vehicle’s behavior.

In this paper, the target vehicle is assumed driven by a
human driver, which means that a human driver determines
whether to make a lane change or not. The case where the
target vehicle is driven by the autonomous driving system is
not considered. Nevertheless, the discussion in this paper may
also be useful for autonomous driving target vehicles, because
most of the autonomous driving system is trying to mimic the
human driver decision making process.

Since the target vehicle is controlled by a human driver,
one needs to consider both the target vehicle itself and the
driver during the lane change inference. On the one hand,
the driver can change the behavior of the vehicle, as shown
in Fig. 3; on the other hand, the status and dynamics of the
vehicle also affects the decision of the driver, e.g., a driver
usually won’t make sharp turn when the vehicle speed is
high due to safety and comfort issue. The behavior of the
target vehicle is the consequence of both its driver’s control
input and the vehicle dynamics, where the driver plays in the
dominant position especially for long-term vehicle behaviors.
Therefore, identifying the driver’s lane change intention can
be considered somewhat equivalent to predicting the target
vehicle’s lane change maneuver. However, it needs to be noted
that the driver’s lane change intention comes first and the target
vehicle’s lane change maneuver is the result of that. Given the
current sensing technology, it is usually not possible for the
ego vehicle to directly detect the behavior of the driver inside
the target vehicle. However, the driver’s lane change intention
is also affected by a lot of other factors, like the surrounding
traffic, road geometry, traffic regulations, driver’s destination,
etc., as shown in Fig. 3. The ego vehicle can rely on these
factors to predict the target vehicle’s driver intention and thus
its lane change maneuver along with the observed behavior of
the vehicle.

In most of the studies, the prediction model only tells how
likely the target vehicle is going to perform a lane change
without information about when the lane change will happen.
Although it is not always clearly stated in these studies,
the predicted lane change maneuver should be happening
within a reasonable period of time in the future, such as 5 or
10 seconds. The prediction result becomes very hard to use if
the time is too long, because the downstream controller can
hardly determine when to react to the possible lane change.
Moreover, it is almost certain that a vehicle is going to make
a lane change given a time duration long enough. However,
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if the prediction model can calculate accurately when the lane
change will happen, it is almost always better to have a lane
change prediction as early as possible.

A. Driver Behavior

Studying the formation, classification, and modeling of
driver behaviors will provide valuable information and hints
on how to predict the lane change maneuver. In general,
drivers’ behaviors can be classified as intended or unintended
behaviors. Unintended behaviors can be caused by distractions
and workload [16], multi-tasking [17], and fatigue [18], etc.
In general, it is difficult to predict an unintended behavior well
beforehand [19]. Because the driver’s intention in the target
vehicle is hard to predict, the lane change inference model
mainly relies on the vehicle’s behavior to ’detect’ rather than to
’predict’ the lane change. Fortunately, most of the lane change
maneuvers belong to the intended behaviors. In [20], [21],
a three-level hierarchy has been proposed to underlie cognitive
control of driving. The three levels include strategic, tactical or
maneuvering, and operational or vehicle control. The strategic
level involves general trip planning, including setting trip
goals (e.g., minimize time, avoid traffic), selecting routes,
and evaluating the costs and risks associated with alterna-
tive trips. The maneuvering level involves the negotiation of
common driving situations such as curves and intersections,
gap acceptance in overtaking or entering the traffic stream,
and obstacle avoidance. The operational level consists of the
immediate vehicle control inputs, which are largely automatic
action patterns (e.g., steering, braking, shifting).

The three decision-making levels can also be considered
as three intentional levels. The lower level decisions are
aligned with higher-level decisions. Different levels of deci-
sions also require different knowledge and time to make [22].
For example, a general trip plan can be made in advance.
Maneuver-level decisions take place in seconds according to
the immediate driving environment. The lane change maneuver
belongs to the category of tactical level driving tasks affected
by the strategic level decisions and determines the operational
level decisions. Therefore, the lane change maneuver inference
can be performed within each driver’s decision level. Once the
strategic level decisions are known, one can tell how likely and
when a lane change will be performed to complete the strategic
level task. Similarly, once the sequence of operational level
driving behaviors is detected, one can tell whether the vehicle
is performing a lane change or not.

To predict the lane change, researchers need to distinguish
the lane change from other maneuvers. Then the maneuver
inference algorithm can evaluate which maneuver is most
likely to be or being executed. In most of the research,
the vehicle is in a multi-lane road environment without con-
sidering intersections or traffic lights. The drivers’ maneuver
or vehicle behavior can be generally simplified and defined
as lane change and lane keeping. Driggs et al. defined three
modes: lane keeping, lane changing and preparing to lane
change [23]. Many research works also considered the left and
right lane change separately [24]–[26]. Some of the research
further divided the surrounding vehicles’ maneuver into

Fig. 4. Three-level hierarchical classification of driver behaviors.

more classes. For example, six maneuver classes were defined
for highway driving in [27]. Deo et al. defined ten maneuver
classes for vehicle motion on freeways in the ego vehicle’s
frame of reference: lane passes, overtakes, cut-ins, and drift
into ego lane [28]. Schreier et al. defined the following maneu-
vers: follow road, follow vehicle, target brake, lane change,
turn, and trash maneuver class [29]. To avoid defining too
many maneuvers, Bahram et al. suggested using a finite set of
basic maneuvers to approximate the infinite number of possi-
ble movements a driver is able to perform on the highway, and
proposed the lateral basic maneuver set to be: lane keeping,
left and right lane change [30]. In this framework, overtakes
can be decomposed to left/right lane change, lane keeping, and
right/left lane change; and merges can also be classified as lane
changes where the ending lane can be considered as the reason
for the lane change, as shown in Fig. 2. Although it is almost
certain that a vehicle is going to change lanes before the lane
end point, but when the lane change will happen still remains
unknown and requires prediction. In general, how to classify
the driving maneuvers depends on how the researchers would
like to model or infer the lane change maneuver. Introducing
more maneuver classes can simplify the modeling process for
each maneuver. However, too many maneuver classes will
make the whole model over complicated. There should be a
trade-off between the simplicity of each maneuver model and
the number of maneuver models.

Lane change can be classified as mandatory lane
change (MLC) and discretionary lane change (DLC) [31].
MLC happens when the driver must leave the current lane,
and DLC happens when the driver performs lane change to
improve driving conditions. For instance, the driver needs to
change to a certain lane to complete some strategic level
driving task even there is more traffic in that lane. If only
traffic conditions are considered, false lane change prediction
can occur. Similarly, an MLC can be anticipated if the car is
driving on a lane that will end very soon. Leonhardt et al. [32]
grouped the lane change events into different types according
to the causes of the lane change, such as slow leading vehicle,
return lane, static obstacle, etc. They also reported the slow
leading vehicle is the most frequent situation observed in their
data set. This classification helps the researchers evaluate the
possible input features for lane change inference and select
the most important ones for better inference performance.
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Fig. 5. Illustration of a typical lane change process.

B. Lane Change Modelling

There are three consecutive phases that can be aspired to
be detected in order to conclude on the driver’s intention of
a lane change maneuver [32]. They are the formation of the
intention, preparation of the maneuver, and performing the
maneuver. While driving, the driver continuously evaluating
the nearby environment and surrounding traffic conditions.
Once another lane is available and more preferable, the driver
will have the intention to drive to that lane. In the second
phase, the driver will double-check the surrounding environ-
ment to ensure safety. Finally, the driver starts to perform
the lane change, which results in observable changes of the
vehicle’s status and movement parameters. In this method,
the lane change maneuver is divided into sub-phases according
to the driver’s intention. Some other works do so mainly
based on the behavior of the vehicle. In [33], the lane change
maneuver was divided into four phases: keeping, changing,
arrival, and adjustment, which is similar to that in many other
research [11]. In general, a typical lane change process can be
modeled, as shown in Fig. 5.

According to the research about the driver behaviors during
lane change [34]–[36], the lane change trajectories can be
fitted by polynomial curves. Eshelman et al. [37] and Nelson
[38] both explored the use of a single polynomial to describe
an ideal lane change maneuver path. The polynomial can be
of any power, but high order polynomials increase complexity
and computation time [39]. Many research works directly used
the lane change model to detect the lane change maneuver,
as will be introduced in Section IV.

The lane change inference can be performed during different
phases of the lane change process. If the inference model
is able to identify the lane change before the target vehicle
performing the maneuver, it is usually considered as lane
change ’prediction’. Otherwise, it is usually considered as
lane change ’detection’. Different inputs can be used dur-
ing different phases. During the formation of the intention,
the driving task, surrounding traffic can be used; when the
target vehicle is performing the maneuver, the target vehicle’s
state of motion can be used. Extracting and evaluating features
from the early stage of the lane change process generally leads
to early detection but low classification accuracy, which will be
discussed in Section IV. For example, the surrounding traffic
speed can be used to provide an early lane change prediction,

as shown in Table II, since this feature belongs to the formation
of the intention stage.

III. SENSING AND ENVIRONMENT PERCEPTION

The sensing ability of intelligent vehicles directly affects
how to develop the lane change inference system and its
performance. The environment perception mainly consists of
the surrounding traffic, road information, and other environ-
ment perception. The surrounding traffic refers to pedestrians,
vehicles, motorcycles, etc. The road information consists of the
lane geometry, marker types, traffic signs, etc. Other environ-
mental information, such as traffic lights, weather conditions,
also have a great impact on the driver behavior [40].

A. Sensing Devices on Intelligent Vehicles

The key components of intelligent vehicles are sensing
devices. The sensors on an intelligent vehicle can be generally
divided into two groups: internal vehicle systems and external
world sensing [41]. The internal vehicle systems are mainly
used to provide the ego vehicle’s status, like yaw rate, speed,
etc. These systems do not directly detect the external world
but provide many inputs utilized by the autonomous driving
systems. For example, the resolution of Global Navigation
Satellite Systems (GNSS) can be increased using data from
IMU. To be noted, these sensors are critical when predicting
the ego vehicle’s lane change driven by human driver. The
external world sensing will be mainly discussed in this paper
since the focus of this paper is the surrounding vehicles’
behavior inference. The main types of external world sensing
devices that can be part of intelligent vehicles are cameras,
Lidars, Radars, Ultrasonic sensors, GNSS, and wireless com-
munication [40], [42], [43]. Different kinds of environment
information can be detected by different sensing devices. The
surrounding traffic is usually detected by cameras, Radars, and
Lidars. The road geometry is usually obtained from cameras,
and High-Definition (HD) maps. Sometimes, the surrounding
traffic can also help to estimate the road geometry [44].
The same environment information can come from different
sensing sources. For example, the surrounding vehicle can be
detected by cameras and Radars; the traffic light can be identi-
fied by the vehicle-to-infrastructure (V2I) communication and
cameras. In this case, sensory fusion can be applied to improve
measurement [45].

While perception in autonomous vehicles is achieved with
many sensing systems, cameras were among the first types of
sensors to be used and are currently the primary choice for
car manufacturers [42]. Current production vehicles mainly
utilize them for lane departure and lane keeping algorithms
[41]. Stereo vision is the application of two or more cameras
to provide the fidelity necessary to distinguish the depth and
height of objects. The challenge for cameras is the sensitivity
to the low intensity of light. So, its performance is usually
limited at night [43].

Radars are integrated into vehicles for different purposes
like ACC, blind-spot warning, collision warning, and
collision avoidance. Utilizing the Doppler effect, they also
provide speed as a direct output. Radars are used for
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TABLE I

COMPARISON OF MAIN TECHNOLOGIES FOR ENVIRONMENT SENSING

both near and far obstacle detection. Generally, the typical
Radar system is a trade-off between range and field of
view. For example, a typical system used for ACC has a
range of approximately 150-meters and a field of view of
approximately 20 degrees [41]. Radar is usually less affected
by weather conditions [43].

Lidar uses an infrared laser beam to determine the distance
between the sensor and a nearby object. Most current Lidars
use light in the 900nm wavelength range, although some
Lidars use longer wavelengths, which perform better in rain
and fog [42]. Although Lidar systems tend to be more accurate
than Radar, they typically have higher costs and require
additional packaging space that prohibits their use. Also, Lidar
systems generally are not as accurate as Radar systems for
detecting speed.

Ultrasonic systems tend to be the cheapest of the tech-
nologies discussed. However, they are typically affected by
blockage or disturbances more than Radar systems based on
the physics of operation described above [41]. It is usually
used to detect short distances at low speed [45].

GNSS is based on the utilization of a receiver and antenna
that communicate with various satellites to triangulate the
absolute vehicle position. Vehicle-to-everything (V2X) com-
munication is the passing of information from a vehicle
to any entity that may affect the vehicle. V2X consists of
different types of communications: vehicle-to-vehicle (V2V),
V2I, etc. V2V is direct communication between multiple
vehicles. V2I technologies capture vehicle-generated traffic
data, wirelessly providing information such as advisories from
the infrastructure to the vehicle that inform the driver of safety,
mobility, or environment-related conditions. Compared with
the Standard-Definition (SD) map, HD map allows vehicles to
locate itself more precisely and to build a more detailed model
of the surrounding environment [46]. Nowadays, the devel-
opment of HD maps enables vehicles to access additional
road and traffic information. Table. I summarized the strengths
and weaknesses of different sensing devices mentioned in this
section.

Fig. 6. Examples of sensors layout on intelligent vehicles.

B. Sensors Layout and Detection Capability

The ADAS or autonomous driving system detects the
surrounding environment by fusing the outputs of different
sensing devices. Depending on the system’s functionality or
autonomous level, different sensor layouts can be implemented
for different systems. Fig. 6 shows two examples of the sensor
layout. The top one is usually utilized for L2 systems. This
kind of system usually has ACC and lane keeping assistant
functionality. Some of them have Radars or other sensors
mounted on the rear of the vehicle to detect the vehicles in
the blind spot. Honda Sensing [47] and Toyota Safety Sense
[48] systems are two examples of the ADAS systems using a
similar sensor layout, as shown in the upper plot. The sensor
layout in the lower plot in Fig. 6 can be used for higher-level
autonomous driving system due to the improved sensing
ability. The actual sensor setup varies a lot among systems
developed by different research groups and companies. Some
systems use more cameras for environment detection, like
Tesla’s AutoPilot [49]. Other systems rely more on Radar or
Lidar, like Waymo Driver [50]. The sensor type and sensor
layout greatly impact the design and performance of the
surrounding vehicle’s lane change detection and prediction
system.

For systems with similar sensor layout as shown in the upper
plot in Fig. 6, it is difficult to detect the vehicles driving in
front of the ego vehicle in the adjacent lanes due to the limited
coverage of the sensors’ field of view, especially when the
vehicles are longitudinally close to the ego vehicle. This situ-
ation is sometimes called as close cut-in. In this case, the lane
change maneuvers usually cannot be predicted before the
lane change starts. The ego vehicle can usually only detect
the lane change of the target vehicle during the middle or
later stage of the lane change maneuver when the target
vehicle enters the sensor’s field of view and is close or
crossing the lane marker. When the target vehicle is detected
close or crossing the lane marker, it is almost certain that
it is cutting in. Therefore, how to improve the perception
performance becomes very important to detect the lane change
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maneuver. Morizane et al. [51] used the camera with a
wide-angle lens to detect a cut-in vehicle from an adjacent lane
near the ego vehicle. To further improve the cut-in detection
performance, Choi et al. [15] applied a part-based vehicle
detection approach that detects a vehicle by combining the
detected tires. According to the authors, the proposed method
can build a cut-in warning system with a high true warning
rate of 98.6% and low latency.

Higher-level autonomous driving systems have much better
surrounding environment detection ability. The additional sen-
sors are able to detect the surrounding vehicles before they are
performing lane change maneuvers. Lee et al. [52] developed
a sensor fusion module that combined the measurements from
Radar and camera sensors to provide relative positions and
relative velocities from the ego vehicle to target vehicles in
neighboring lanes. A simplified bird’s eye view is fed into a
Convolution Neural Network (CNN) to predict the vehicle’s
lane change intention. In [33], Woo et al. mounted six Lidars
around the ego vehicle to detect the surrounding vehicles’
position and speed. Many research works did not specify the
sensor setup but assumed that the ego vehicle has the ability
to detect all the relevant surrounding vehicles with enough
accuracy [26], [53].

Most of the research work uses on-board sensors like
cameras, Radar, and Lidar for environment detection. Prob-
lems arise when other vehicles are outside the field of view of
these sensors or blocked by other surrounding vehicles [54].
The limited detection range of these sensors also poses a
constraint on the time the ego vehicle has to react to a lane
change maneuver. V2X provides another way to improve the
detection of surrounding vehicles. Although these vehicles
may not have direct impact on the ego vehicle, it may affect
the target vehicle’s behavior. Sakr et al. [55] proposed a
machine learning based approach to detect lance changes of
remote vehicles using V2V data received at the ego vehicle
via DSRC. Ma et al. [56] also used the V2V communication
to improve the detection accuracy of the speed and position
of the target vehicle. Moreover, according to [57], researchers
even suggested improving ACC safety in cut-in scenarios by
V2V communication where the cut-in vehicle transmits a clear
message of lane changing (an equivalent of ’turning light’)
to the following vehicle at the instant it starts to make lane
changing. However, the disadvantages due to the high cost
of the required infrastructure, the scalability problem of the
networks, and the related security issues make its industrial-
ization very difficult [58]. To the best of our knowledge, there
is no dedicated research and study in this area yet. But, this
could be a promising research topic in the future. In addition,
the HD map provides a very useful and high-quality resource
for detecting the surrounding road geometry. For example,
the road curvature and distance to highway exit considered
in [24] can be obtained directly from the HD map.

IV. LANE CHANGE MANEUVER INFERENCE

The lane change inference system requires multiple tech-
niques such as data fusion, perception, data processing, etc.
As shown in Fig. 7, the ’data fusion & perception’ module

Fig. 7. Architecture of a typical lane change maneuver inference system.

fuses all the signals captured from the sensing devices and
obtains all the surrounding traffic and other environmental
information. Then the variables in the ego vehicles’ coordinate
system are converted into the target vehicles’ coordinate
system and processed into features that can be consumed by
the inference algorithm. Finally, the lane change inference
algorithm provides the inference results to the downstream
modules.

A. Inputs for Lane Change Maneuver Inference

During each phase of the lane change maneuver, different
inputs can be used to predict or detect the driver’s behavior.
The inputs can be further divided into three groups accord-
ing to their resources: environment context, driver behavior,
the status of the vehicle.

1) Environment Context: Environment context around the
surrounding vehicle is the primary reason for the driver to
do the lane change. Therefore, it is the primary input during
the intention formation phase shown in Fig. 5. Environment
context can be further classified into two groups: the dynamic
environment and static environment.

• The dynamic environment refers to the movable or mov-
ing neighboring traffic, such as pedestrians, vehicles,
motor-cycles;

• The static environment mainly includes the road/terrain
information, traffic signs, weather condition, etc.

Environment information is usually only available on vehicles
equipped with sensors for the higher-level autonomous driving
system. Due to the difficulty of capturing and its complex
nature, the environment context input is not intensively studied
until recent years as advanced sensing or connected vehicle
technologies are being developed. This information mainly
belongs to the formation of intention stage shown in Fig. 5 and
influences the strategical level driver decisions shown in Fig. 4.
Therefore, inference systems using this information usually
can detect the lane change maneuver early.

Zhang et al. used four neighboring vehicles’ along with
the target vehicle’ information to predict the lane change
maneuver of the target vehicle [59]. The information used
is the longitudinal relative speed and distance between the
target and its neighboring vehicles. Leonhardt et al. evaluated
the lane change prediction using the similar inputs [32].
The authors used the Adapting Deceleration to Safety Time
(ADST), calculated in Eq. 1, to quantify the occupancy of the
possibility and likelihood of the lane change.

aADSTv0
=

(
vE0 − v0

)2

2
(
v0tSa f et y − s0

) (1)
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where s0 and v0 are the distance and velocity of the neigh-
boring vehicle; vE0 is the velocity of the target vehicle; and
tSa f et y is a striven safety time [60]. In contrast, Woo et al. [61]
borrowed the potential field method often used for robot nav-
igation to calculate whether a lane change is advantageous or
not, depending on the relative distance and speed between tar-
get and its neighboring vehicles. Wissing et al. used Sigmoid
function to model the lane change probability reflecting the
benefit and feasibility of a lane change maneuver [53]. Some
other research directly utilizes the neighboring traffic’s status
and feeds it into the classification algorithm. Dou et al. [62]
considered the lead and lag vehicles in target lane, in a
highway lane drop scenario.

Some research used more neighboring vehicles around the
target vehicle and more properties (like speed history) associ-
ated with each neighboring vehicle [25], [63]. Dai et al. [64]
considered the closest six neighbours around the target vehicle.
In [65], [66], the three closest vehicles in the target vehicle’s
current and two adjacent lanes were used for prediction.
Altch et al. [67] even considered nine vehicles to improve the
prediction performance. Instead of considering a fixed number
of vehicles, some studies only consider the vehicles within
some certain distance [68]–[70].

Ideally considering more vehicles can improve the predic-
tion performance. However, in practical application, the states
of the surrounding vehicles are not always available due to
sensor blockage or limitations. The sensor outputs for the
partially blocked or far-away vehicles are subject to large
noise. And this noise can lead to false predictions.

Static environment information is another stimulus to the
lane change intention. As the HD map is becoming a trend
for autonomous vehicles, more information about the road
will become available. The lane marker type, available lanes
on the sides of the target vehicle, road curvature, elevation,
distance to the highway exit, and speed limit were considered
in [24], [71]–[73]. Das et al. also considered the weather
information [73]. It was observed that there were signifi-
cant differences among different weather conditions for most
of the parameters, such as speed, longitudinal acceleration,
and deceleration during lane changes. Considering weather
conditions can also improve classification accuracy.

2) Status of the Vehicle: For ego vehicle driver intention
detection, many signals available through the Control Area
Network (CAN) are used, such as steering wheel angle and
brake/gas pedal position. However, these signals are usually
unavailable for detecting the surrounding vehicle’s intention.
Depending on the different sensor setup of the intelligent vehi-
cle, various properties of the surrounding vehicles’ status can
be detected. The widely used signals are longitudinal/lateral
position, speed, acceleration of the target vehicle [33], [74].
These variables can be based on different coordinate systems:
the ego vehicle’s coordinate system and the road coordinate
system. Some research assumes that the ego vehicle is driving
along the centerline of a straight lane, where the surrounding
vehicles’ properties are similar in both coordinate systems.
However, once such an assumption is not valid, the sur-
rounding vehicles usually need to be considered in the road
coordinate (or curvilinear coordinate) system. The projection

of the surrounding vehicles onto the road coordinate system
requires the road/marker information coming from the HD
map, cameras, or other sensing devices. Most of the research
considered the target and surrounding vehicles’ properties in
road coordinate system [24]–[26], [75]

In [26], [28], [54], [76]–[78], not only the current values
of the vehicle status were considered, but the track history
of the values were also used to improve the lane change
inference performance. The lane change maneuver is regarded
as a dynamic process. The time-series data was sent to
the algorithms such as the Dynamic Bayesian Network,
the Hidden Markov Model (HMM), or the Long-Short Term
Memory (LSTM). Although the track history can provide
more information about the vehicles, it requires the sensing
system having stable detection of the objects for a longer
period of time. This is hard to achieve in some cases due to
sensor limitations or blockage.

The turn signal is a practical solution for drivers’ lane
change intention inference [79]. However, this signal can
also be used for other behavior, such as specific direction
turning [80]. Many researchers have conducted studies demon-
strating problems in the sensitivity of the turn signal as an indi-
cator for lane changes [81]–[83], especially for inferring the
traditional ego vehicle driver lane change intention. However,
as more sensors and HD maps are becoming available for AD
vehicles, the turn signal can be used with other information,
like road type, to improve its sensitivity for lane change
prediction.

3) Driver Behavior: The driver’s behavior, like eye and
head movement, is widely used to detect the driver’s intention
of the ego vehicle. Due to the sensor limitation, it is hard to
use these signals to predict the surrounding vehicle’s intention.
However, with the development of relevant technologies, such
as V2V communication, these signals may be available in
the future. The driver behavior signals mainly including the
eye and head movement of the driver [84]–[86]. Some other
body behavior signals, like electroencephalogram, foot, hand,
and body gestures, were also utilized for ego vehicle driver
intention inference [87]–[91].

4) Feature Selection: There is a lot of research about driver
intention prediction. Meanwhile, a large number of different
variables or parameters are used as the inputs for the lane
change inference system. The parameters are also known as
situation features [75]. As sensing technologies keep being
developed, the number of available features is also increasing.
Consequently, selecting the most critical features as the inputs
becomes an increasingly important topic when developing the
lane change inference system. The objective of feature selec-
tion is three-fold: improving the prediction performance of the
predictors, providing faster and more cost-effective predictors,
and providing a better understanding of the underlying process
that generated the data [92].

Schlechtriemen et al. [24] proposed the use of Area under
the Curve (AUC) of the Receiver Operating Characteris-
tic (ROC) to evaluate each feature [93]. The prediction power
for each feature is defined as:

AUCt (tm) = AUCtotal(Ft=tm ) (2)
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TABLE II

PART OF THE FEATURES EVALUATED IN [24], [32], [94] FOR
LANE CHANGE INFERENCE

where F is the feature vector, tm denotes the time before a
lane marker is crossed, and AUCtotal is defined as:

AUCtotal =
∑

c∈M

AUCc · p(c) (3)

where M is the aggregate of the maneuvers, and p(c) is
the corresponding probability. According to the equations,
the prediction power also considers how early a lane change
maneuver can be predicted using each feature as the input.
As expected, it is found different features contribute differently
at the different times prior to the lane change [24]. This
method requires the output from the maneuver classifier,
which means the results are also affected by the classifier
algorithm. Some other researchers evaluated the feature’s
ability to predict lane changes by a statistical approach: the
analysis of variance (ANOVA) [32], [94]. Similarly, the time
before lane changes is also considered in the evaluation.
Leonhardt et al. [32] divided the data into two sets: lane
change and lane keeping. The null hypothesis H0 is assessed
by calculating the p-value to determine whether the difference
between the expectation values of the two data sets of a
feature is statistically significant, where H0 states that the two
populations’ expectations are equal. Unlike the AUC method
mentioned above, ANOVA method does not rely on the output
of the classification algorithm. Researchers are able to select
the features before selecting a certain classification algorithm.
It only reflects how each feature is correlated with the lane
change maneuver. Das et al. [73] chose the Boruta algorithm
because it utilizes ’all-relevant’ feature selection method that
allows selecting all features related to the outcome feature.
Table. II shows some of the features studied in [24], [32], [94].
The ’Time to LC’ reflects how early the corresponding feature
can be used to predict the lane change. The values are obtained
by combining all the time intervals, evaluated in [32], with
effect size larger than 0.5.

Besides evaluating which features can provide the most
prediction power, studying the combinations of features also
plays an important role to improve the prediction performance
according to [95]. Huang et al. evaluated different combi-
nations of feature selection by applying Entropy analysis,
where the entropy correlation coefficient is calculated. It was
found that certain feature combinations can actually harm the
system’s uncertainty level [95]. Therefore, when selecting the
input features for the system, certain combinations should be
avoided.

B. Outputs of Lane Change Maneuver Inference

The outputs of the surrounding vehicles’ lane change
maneuver inference can be in different forms. The simplest
and most widely used method is the binary type output. This
kind of approach outputs a flag telling whether the associated
vehicle is going to or is performing a lane change. The binary
output is simple for the downstream controllers to use but
provides less information about the likelihood of the lane
change. Another kind of output also tells the probabilities
of the lane change and other maneuvers depending on the
maneuver classes definition. In this case, the downstream con-
troller is able to react differently according to the lane change
probability [96]. For example, in [27], [97], the likelihood of
each predefined maneuvers were predicted. Readers can refer
to Table. IV for the output types for some selected papers.

The time to lane change is a significant variable for the
downstream controllers to plan the ego vehicle’s movement.
However, the time to lane change is usually not a direct output
of the lane change inference system. Nevertheless, most of the
research evaluated how early the inference system can identify
a future lane change [59], [71], [72], [98]. There is also some
research that especially studies the time to lane change after a
future lane change maneuver is already identified [99], [100].

C. Algorithms for Lane Change Maneuver Inference

The algorithms used for lane change inference can be gen-
erally divided into two different approaches: the model-based
and machine learning approaches. In recent years, the machine
learning approaches are becoming very popular in this field,
and can be further classified into generative and discriminative
approaches. The generative approaches are more suitable for
multi-target algorithms, while the discriminative approaches
are mainly used for single-target algorithms [19]. As one
of the machine learning techniques, the neural networks can
be either generative or discriminative models depending on
their structures. However, due to their popularity, the neural
networks are classified as a separate group in this paper,
as shown in Fig. 8.

1) Model-Based Approach: The first approach is based on
a set of driver behavior models. The system continuously runs
several versions of the behavioral models in parallel. Each
model embodies a different driver maneuver, like lane change
and lane following. The system gathers observable data from
the driver and compares each model’s simulated behavior with
the driver’s actual observed behavior. Then some similarity
metric is used to determine the best matching model and thus
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Fig. 8. A summary of popular algorithms used for lane change inference systems.

infers the driver’s most likely current intention [101], [102].
This kind of approach puts a lot of effort into developing the
driver models. The classification methods sometimes are based
on some machine learning algorithms.

Another approach tries to model the driver’s
decision-making process. It is usually based on the assumption
that drivers are always choosing the maneuvers that can give
the best balance between safety and comfort. How good
a particular maneuver can be is usually formulated as a
cost function. The cost of all the possible maneuvers of
the target and its surrounding vehicles will be calculated.
The predicted maneuver will give the smallest cost. For
example, Sorstedt et al. approximated the driver as an
optimal controller according to a cost function reflecting
safety, comfort, and preferred speed [103]. Lawitzky et al.
predicted the drivers’ maneuvers by evaluating the collision
probability of all the interacting vehicles. It was assumed that
the drivers locally optimize their trajectories based on the
estimation of the intention of the surrounding drivers [104].
However, this approach leads to exponential growth with
the number of vehicles [105]. To solve this problem,
Schwarting et al. checked the maneuver combinations in a
recursive way, where only pairs of vehicles were considered
instead of all vehicles at once [105]. Schlenoff et al. applied a
similar approach which also used the short term vehicle state
prediction obtained based on the vehicle dynamics [106].

The model-based approach generally has good interpretabil-
ity and can provide long-term predictions. However, the tuning
of the cost functions or similarity metrics is usually chal-
lenging. Moreover, the assumption that all vehicles will try
to avoid collisions may not be true in some situations [107].
Some dangerous lane change may not be predicted due to
the fact that the drivers’ decisions are based on imprecise
perceptions and information [108]. Moreover, in the above
mentioned studies, it was assumed that all the drivers could
be described by the same model. In reality, drivers have
different driving styles that lead to different behaviors. How
to accurately identify the driver’s driving style remains a
challenging problem.

2) Generative Approach: Generative approaches are widely
used for lane change inference.The Bayesian Network imitates
human like-reasoning and decision making [14], [29], [74].
In some research, when assuming all features are mutually
conditional independent, one of the most straightforward

Fig. 9. The Dynamic Bayesian Network used in [76]. The nodes in the
network represent variables and the connections between nodes in the form
of arrows represent conditional distribution. The prior network defines the
connection between the nodes at the first time, and the transition network
defines the connection between the time t and the time t + 1.

Bayesian Networks, the Naive Bayesian Classifier, can be
used [74]. The Bayesian Network computes and analyzes at
each time step without using the history data. Some research
considers the driving as a dynamic process, and extend the
Bayesian Network to Dynamic Bayesian Network [76], [109].
Since the driver intention is greatly affected by driver charac-
teristic, Liu et al. [76] also considered the driver characteristic
in the Bayesian Network, as shown in Fig. 9. As a method
to improve the efficiency for exploring receptive structure
patterns, the Object-oriented Bayesian Network was adopted
in [75]. HMMs, which can be considered a type of Dynamic
Bayesian Network, is another way of modeling time series data
[28], [110], [111]. In [59], the continuous HMMs integrated
with the Gaussian Mixture Models were used to model the
lane change and lane keeping behavior.

3) Discriminative Approach: Unlike the generative
approach, the discriminative approach does not need to model
the dependencies between evidence variables. In [33], [112],
Support Vector Machine (SVM) was used to estimate the
driver’s intention while applied to trajectory prediction.
Kumar et al. [113] used a Bayesian Filter on top of the
multi-class classifier in order to improve the reliability of the
predictions. It was expected that the smoothing introduced
by the filter will reduce the rate of false alarms and missed
detections. In [114], a Bayesian extension to the SVM, called
a relevance vector machine, was used to discriminate between
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TABLE III

COMPARISON OF DIFFERENT TYPES OF POPULAR ALGORITHMS USED FOR LANE CHANGE INFERENCE SYSTEMS

lane change and lane keeping. Hu et al. [115] presented a
decision tree based method for maneuver prediction between
braking or lane changing in cut-in scenarios. In some
research, a large number of features were used to analyze the
driver intention. It is hard to assume independence between
the features. Moreover, the data set is highly affected by
noise and outliers. To solve this problem, Random Forest
algorithm was used to classify the driver intention [25],
which was an ensemble of several decision trees. In general,
the discriminative approach optimizes its model parameters
for the classification problem itself rather than describing the
lane change process.

4) Neural Network: The Neural Network is another group
of algorithms being widely used. Probabilistic Multi-Layer
Perceptron (MLP) was proposed for lateral motion prediction
in [116]. Based on a set of representative trajectories for each
target lane, the MLP model provides probabilities of how
likely a vehicle will follow each trajectory and each lane
with high-speed data sets. In [117], a Convolutional Neural
Network (CNN) was used with MobileNetV2 [118] as the
feature extractor. Lee et al. proposed an approach to infer
traffic participants’ lane-change-intentions based on a CNN
for enhancing ACC [52]. Some other studies also chose CNNs
to predict vehicle behaviors [119]–[121]. Recurrent Neural
Network (RNN) is different from a typical neural network by
containing feed-back connections [122]. This makes RNN suit-
able for time-series problems [11]. The typical RNNs lack the
interpretability of the probabilistic graphical methods [123],
like Bayesian Network. To solve the problem, Patel et al. [63]
proposed a composite RNN model by adopting Structural
Recurrent Neural Networks to learn factor functions and take
advantage of both the high-level structure of graphical models
and the sequence modeling power of RNNs. The problem
of RNNs is that the input decays or increases exponentially
over time, which causes problems in training. An Long-Short
Term Memory (LSTM) uses a gating system to overcome this
problem [124]. An LSTM has the property of remembering a
value for an arbitrary length of time, allowing it to overcome
the vanishing gradient problem [122]. Therefore, LSTM is
widely used in driver intention prediction [26], [125]–[127].
Deo et al. [26] proposed an LSTM model for both vehicle
maneuver and trajectory prediction for the case of freeway traf-
fic. Using the surrounding vehicle’s track histories, the LSTM

Fig. 10. The maneuver classification LSTM network used in [26].
[xt−n , . . . , xt−1, xt ] is the input tensor of track histories of the target vehicle.

network provides the probabilities of lateral and longitudinal
maneuver classes as shown in Fig. 10, where lane change is
one of the lateral maneuvers. In [72], Scheel et al. added
an attention layer on top of the LSTM network to improve
both the inference performance and interpretability. Some
studies combined different neural networks to achieve better
performance. For example, the LSTM and CNN were used
together in [128], [129].

In general, the model-based and generative approaches have
better interpretability than the other approaches. The discrim-
inative approach usually has good classification performance
because its model parameters are specifically optimized for
classification. However, it usually cannot provide lane change
probabilities. The neural network usually requires an extensive
data set to train, but various tools are available to facilitate the
development process. The strengths and weaknesses of differ-
ent approaches are summarized in Table. III. The algorithms
used by some selected papers are listed in Table IV.

V. VALIDATION AND EVALUATION

A. System Validation

Most lane change inference systems are validated by
real-world driving data collected by the corresponding
researchers who designed the systems. This requires the
research group to have their own test vehicles equipped with
all the necessary sensors, data acquisition, and processing
systems. Although this validation method is persuasive and
trustworthy, it requires lots of effort to set up the test vehicles.
Therefore, some of the research work is validated using
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TABLE IV

SELECTED RESEARCH WORKS IN RECENT YEARS FOR SURROUNDING VEHICLE’S LANE CHANGE MANEUVER INFERENCE

simulation platforms [29]. Another option is to validate the
system using publicly available real-world datasets, such as
Next Generation Simulation (NGSIM), highD, PREdiction of
VEhicles iNTentIONs (PREVENTION), Safety Pilot Model
Deployment Data (SPMD) [131], and Strategic Highway
Research Program (SHRP2) [73]. The NGSIM US Route 101
(US-101) and Interstate 80 (I-80) Freeway datasets are widely
used in many research works. The datasets are collected by
the vision-based highway monitoring systems. Each dataset
consists of real freeway traffic trajectories captured at 10Hz
over 45 minutes, segmented into three 15-minute periods.
These periods represent the buildup of congestion, or the
transition between uncongested and congested conditions, and
full congestion during the peak period. The HighD dataset
used in [76], [136] is very similar to the NGSIM. It uses a
drone to record the traffic in a segment of highway [137].
These datasets reduce the effort of setting up the testing

platform and performing the data collection and help dif-
ferent researchers easily compare their algorithms’ perfor-
mance. However, the datasets are not collected from the
perspective of intelligent vehicles, so final onboard predictions
deserve further verification [71]. Some researchers used the
dataset captured in the ego vehicle’s perspective, like the
PREVENTION dataset used in [134]. The PREVENTION
dataset is collected from 6 sensors of different nature (Lidar,
Radar, and cameras), which provides both redundancy and
complementarity, using an instrumented vehicle driven under
naturalistic conditions [138].

B. Performance Evaluation Metrics

In case of the binary output, the lane change maneuver
inference results can be classified into four categories [24],
[30], [109], [134]:
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• True Positive (TP): lane change maneuvers correctly
inferred as lane change

• False Positive (FP): lane keeping maneuvers incorrectly
inferred as lane change

• True Negative (TN): lane keeping maneuvers correctly
inferred as lane keeping

• False Negative (FN): lane change maneuvers incorrectly
inferred as lane keeping

Using the above four categories, the classification perfor-
mance for typical classifiers can be generally evaluated by the
following metrics:

• Precision (PRE): the fraction of correct classification of
corresponding lane change out of all events predicted to
be lane change,

P RE = T P

T P + F P
(4)

• True positive rate (TPR), also known as Recall: the
fraction of correct classification of corresponding lane
change out of all actual lane change events,

T P R = T P

T P + F N
(5)

• False positive rate (FPR), also known as fall-out: the
fraction of incorrect classification of corresponding lane
change out of all actual lane keeping events,

F P R = F P

F P + T N
(6)

Since the lane change inference system is a continu-
ously predicting the vehicles’ lane change maneuvers,
it is not straightforward to calculate the number of TN
events. False positive per time period is sometimes used
instead [114], [139].

Sometimes, accuracy (ACU) is also used for measuring
the classification performance. It is the fraction of correctly
classified maneuvers out of all predicted maneuvers,

ACU = T P + T N

T P + F P + T N + F N
(7)

However, for imbalanced test data set where lane keeping
samples are way more than lane change samples, the accuracy
can be misleading [24], [30]. Because even a classification
algorithm predicting every measured sample of a vehicle as
lane keeping would lead to high accuracy.

For a particular inference system, its classification perfor-
mance can often deliberately be biased towards one of the
metrics mentioned above by only changing the threshold used
in the inference system [140]. There is always a trade-off
between these metrics. For example, the TPR can usually be
improved at the cost of FPR. For some systems, the desired
FPR is zero [33]. Then the PRE and TPR need to be sacrificed.
Considering the trade-off effect, the F1-score is widely used
to evaluate the classification performance of the lane change
inference system with certain threshold choice. It can be
interpreted as a weighted average of the precision and recall
values:

F1 = 2 · P RE · T P R

P RE + T P R
(8)

The F1-score can also be changed by adjusting the threshold
value without modifying the other part of the inference system.
As a method to evaluate the classification performance of the
lane change inference system without considering the thresh-
old, the area under Receiver Operating Characteristic (ROC)
curve (AUC-ROC) is widely calculated [95]. The ROC curve
is a graphical representation of the trade-off between the TPR
and FPR. A greater AUC-ROC means a better average per-
formance [93]. Similarly, the area under the Precision-Recall
curve can also be used, where the Precision-Recall curve
shows the precision as the function of recall.

Besides the classification performance mentioned above,
the researchers also need to consider how early the inference
system can predict the lane change. For AD systems, it is
essential to predict the lane change of the surrounding vehicle
as early as possible. It is another metric to compare the
performance of different inference systems. Usually, the time
to lane change is used as the indicator to show the capacity
of predicting the lane change maneuver in advance,

τLC = tLC − tI (9)

where tI is the time when the lane change inference system
first judges that the target vehicle would change lane. tLC is
the moment of the target vehicle performing the lane change
maneuver. Its definition varies among different research works.
Woo et al. [33] defined it as the moment when the target vehi-
cle crosses the centerline. In other research, the lane change
time is defined as the moment when the target vehicle crosses
the lane marker [71]. There is usually a trade-off between the
time to lane change and the classification performance. The
researchers have to balance them. Julian et al. [25] shown that,
by adjusting the threshold, the FPR can be greatly reduced
while the time to lane change is also shortened.

VI. CHALLENGES AND FUTURE WORKS

A. Improving Sensing Ability

Due to the limited sensing ability, some previously devel-
oped lane change inference systems can only detect the
lane change when it has already been executed. It is even
more challenging when surrounding vehicles perform the lane
change maneuver outside the sensors’ field of view, like the
close cut-in scenario discussed in the previous sections. Some
techniques can be applied to improve the performance without
additional sensors, such as the part-based vehicle detection
approach used in [15]. A more straightforward way to improve
inference performance is to use more sensing devices to
extend the field of view and detect more useful variables. For
example, the V2X communication and HD map have been
considered and used by more researchers for lane change
inference in recent years. Although the additional sensors have
their limitations and increase the cost, more research is needed
to explore their potential for lane change inference.

B. Measurement Noise Handling

The inputs for the lane change maneuver inference sys-
tem come from multiple sensors equipped on the intelligent
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vehicle. Different sensors have their limitations on environ-
ment detection as discussed in Section III. A variety of
techniques are being applied on intelligent vehicles to improve
the resolution, accuracy, and reliability of the perception
output [141], [142], such as Kalman filters and Particle fil-
ters, etc. However, the sensing noise and uncertainty cannot
be eliminated completely. Moreover, as more features, like
environment context, are introduced for lane change inference
to advance the prediction time, the measurement noise is
becoming larger. Different inputs also have different noise
levels. How to utilize the input signals according to their
noise levels requires further study and research. Some previous
research tried to model the sensor uncertainty while developing
the lane change inference system. For example, Kasper et al.
considered the sensor noise as Gaussian distribution and
modeled the uncertainty by a Bayesian network class [75].
However, the amount of similar research is limited. The
effect of the measurement noise on the performance of the
lane change inference system is not intensively studied in
the previous research. More dedicated analysis is needed to
study how the measurement noise affects the inference results
and how to improve the inference performance with input
noise.

C. Comprehensive Environmental Interactive Model

The input features for lane change inference can come from
different stages of the lane change process shown in Fig. 5.
Each feature contributes to the final driver’s decision in
a different way. The previous research mainly studied the
relationship between the input features and output behavior
by statistical analysis of the driving data without much inves-
tigation about their inherent inner and inter-connections. More
comprehensive environmental interactive models are needed to
capture the mathematical relationship between the features and
driver’s decisions, especially the strategical and tactical deci-
sions. Moreover, most of the previous research only studied
the lane change inference in the highway environment without
lane split, merge, etc. When a more complicated situation is
considered, like in the urban road, more comprehensive envi-
ronment models are required. For example, Geng et al. tried
to tackle this problem by adaptively using scenarios-specific
models when predicting the driver’s behavior in urban envi-
ronments [98].

Weather is another factor that can greatly impact the lane
change inference system. The effect of different weather
conditions is twofold: they can affect the quality of the data
captured by the sensing devices as discussed in Section III
and also the drivers’ behavior performing the lane change
maneuvers. El Faouzi et al. found that rain conditions impact
the time headway between vehicles [143]. Heavy snow can
reduce the free flow speed by as much as 30∼40% [144].
Das et al. found that the lane change classifiers did not main-
tain similar performance under different weather conditions.
Their detection accuracy was increased after including the
weather as one of the input features [73]. Therefore, modeling
the effect of weather conditions is another way to reduce their
impact on lane change inference systems’ performance.

VII. CONCLUSION

The accurate lane change inference of the surrounding
vehicles plays a critical role in keeping the intelligent vehicle
safe and comfortable. This paper focuses on constructing a
comprehensive review of the techniques and research in this
field. The lane change decision comes from the interaction
between the driver and the environment. Therefore, a variety
of driver behaviors and lane change modeling studies are
reviewed, which are useful for the design of the inference
system and the selection of input features. According to the
reviewed research papers, using input features from different
lane change stages can lead to different performance. As the
source of all the inputs, various sensing devices equipped on
intelligent vehicles are reviewed and compared regarding their
sensing abilities and impacts on the lane change inference
system. As the key part of this review, the algorithms and
validation methods for lane change maneuver inference are
sincerely discussed and analyzed. In addition, some potential
future research directions are also proposed as a reference for
further studies of the lane change inference of surrounding
vehicles for higher-level autonomous driving.
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