

Road accident prediction and model interpretation using a hybrid K-means and random forest algorithm approach

SCH Univ. Dept. of AI and Bigdata Sunghun Kim Developing Traffic Safety

contents

- 1. Introduction
- 2. Previous literature review
- 3. Methodology
- 4. Experiment, evaluation, and discussion
- 5. Experimental result analysis

IYANG

1. Introduction

1. Introduction

1. RTA (road traffic accident)

- Churning the world with killing thousands and bringing demolition of property in a day without discrimination
- Does not give much attention to mitigate the severity
- Not occur by chance, it has patterns and can be predicted and avoided
- 2. Getting insights and identify the underlying cause of vehicle accidents and related factors

Reduce road traffic accidents

2. Previous literature review

Conventional statistical-based approach lacks the capability to deal with multidimensional datasets

To address the limitations of traditional models, many studies used ML approach due to its predictive supremacy, time consuming

<State-of-the-art model for accidents>

- K-means
- SVM (Support vector machine
- KNN (K-Nearest Neighbors)
- DT (Decision Tree)

- ANN (Artificial Neural Network)
- CNN (Convolution Neural Network)
- LR (Logistic Regression)

2. Previous literature review

Road Accident Analysis by Kwon et al.

- Model Used: Naïve Bayes and Decision Tree
- Methodology: Binary Regression for Performance Comparison
- Finding: NB showed higher sensitivity to risk factors compared to DT

Road Accident Analysis by Sharma et al.

- Model Used: Support Vector Machine(SVM) and Multi Layer Perceptron(MLP)
- Independent Variables: Alcohol and Speed considered as key factors
- Methodology: Model Comparing by Accuracy
- Finding: SVM with RBF kernel achieved higher accuracy (94%) compared to MLP (64%)

2. Previous literature review

Motorcycle Crash Analysis by Wahab and Jiang

- Data: crash accidents in Ghana
- Model used: MLP, PART and SimpleCART
- Methodology: Used Weka tools to compare the model and applied InfoGainAttributeEval to see the most influential variable for motorcycle crash
- Finding: SimpleCART model showed better accuracy than other classification models

3. Methodology

3. Methodology

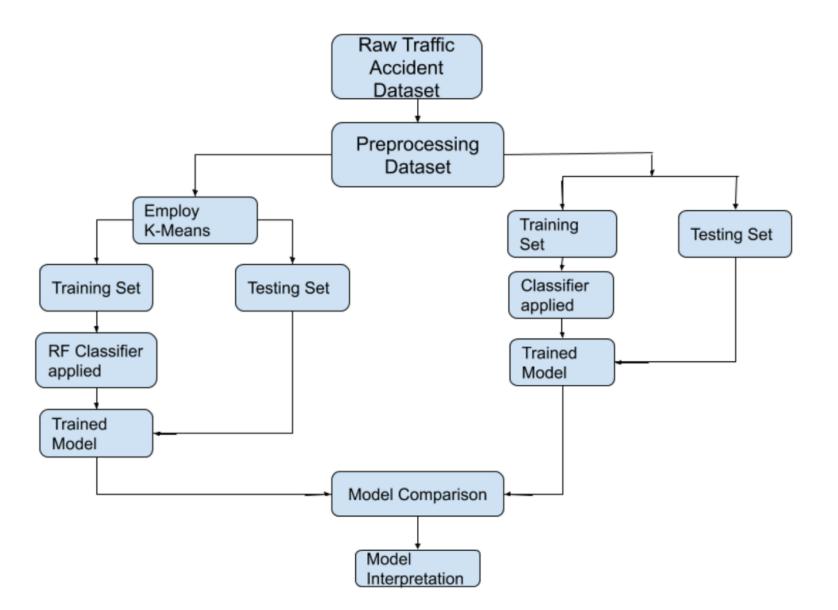
K-means clustering + Random Forest

For creating new features

Classifier

3.1 Road accident dataset manipulation

Fig. 1 Flowchart of proposed model framework for predicting road traffic accident—case of Ethiopia



3.1 Road accident dataset manipulation (Data)

Raw traffic accident dataset

- 5000 road traffic accidents collected from federal traffic police agency
- 2011 to 2018 in Addis Ababa

<Data Feature>

- Accident time
- Driver age
- Sex
- Driver experience
- Type of vehicle

- Service year
- Location
- Road condition
- Light condition
- Weather condition

- Casuality class
- Casuality age
- Casuality sex
- Severity

3.1 Road accident dataset manipulation (Preprocessing / Data Splitting)

Data preprocessing

- Data cleaning
- Missing value handling
- Outlier treatment
- Dealing with absolute value \rightarrow encoding and normalization

Prediction model

Data Splitting

• 70% train data, 30% test data

Unobserved Heterogeneity

- Unobserved characteristics associated with observed characteristics during model building

- Effective clustering maintains similarity within clusters and diversity between them
- Create new features
- Combined with classification, enables swift, accurate training, and reduced computational memory usage

3.2 K-means techniques

K-means algorithm

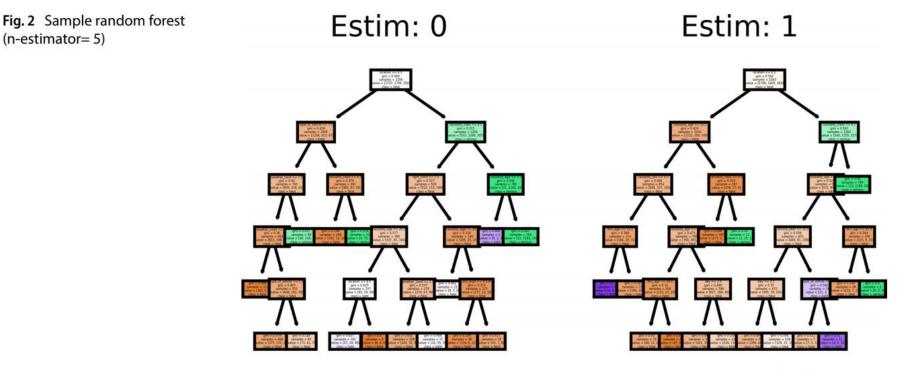
- 1. Randomly initialize and select the Cj-centroids
- 2. Calulate the distance between each instance to the Cj-centroid
- 3. Compute mean of each data points in each cluster to find their centroid
- 4. Repeat the forementioned steps until each points assigned to their nearest cluster

Squared error function

$$f(x) = \sum_{i=1}^{k} \sum_{j=1}^{n} |X_i - C_j|^2$$

3.3 Random forest techniques

- Decision trees prone to overfitting \rightarrow Random Forest mitigates using multiple trees
- Robust algorithm for large datasets (provides accurate predictions)
- Maintains accuracy with missing data



SN Applied Sciences A Springer Nature journal

4. Experiment, evaluation, and discussion

4.1 Data manipulation

Missing value handling

- Ignore or drop missing value
- Fill using different method
 - ↔ numeric variables: mean / categorical variables: mode

Categorical Value Encoding

- Machine learning require numeric values to predict a model
- Among 14 variables, 10 of them are categorical values
- Predictive and target variables converted into numeric using one-hot-encoding and label encoding

	Missing Values	% of Total Values
service_year	1128	22.6
driv_expe	898	18.0
type_of_vehcle	571	11.5
driv_age	538	10.8
sex	422	8.5
causality_age	320	6.4
location	315	6.3
causality_sex	166	3.3
light_cond	157	3.2
day	131	2.6
casuality_class	110	2.2
road_cond	105	2.1
severity	74	1.5
weather_cond	1	0.0

4.2 Evaluation metrics

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

$$Recall = \frac{TP}{TP + FN}$$

$$Specificity = \frac{TN}{FP + TN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$f1 - score = 2 \times \frac{(Precision \times Recall)}{(Precision + Recall)}$$

- TP: it shows predictive is positive and it is normally true
- TN: it implies predictive is Negative and it is normally True
- FP: denotes predictive is positive and it is normally false
- FN: represents predictive is negative and it is false

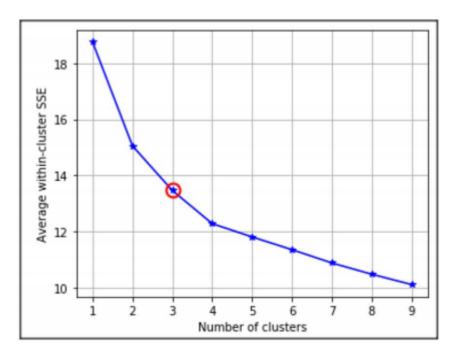
5. Experimental result analysis and discussion

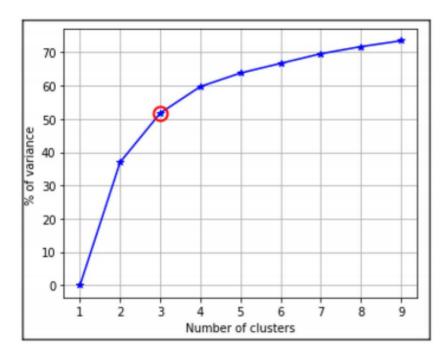
5.1 Choosing K

- No specific solution to find the exact value of K
- K increases, the sum of squared distance leans towards zero and the percentage of variances increase

Inertia

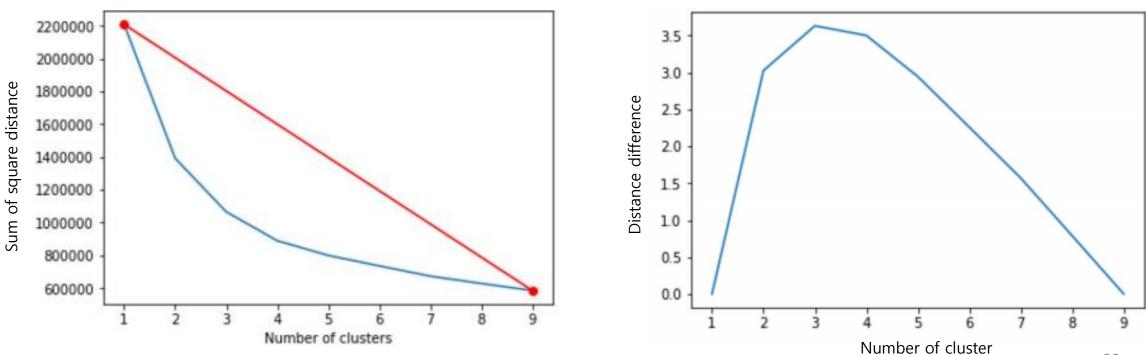
- Sum of squared distances
- Sum of distances between data points and cluster centroids





5.1 Choosing K

- 1. Based on elbow method, the elbow resembles a suitable 'k' value.
- 2. Due to ambiguity, a line connecting 'k' values 1 and 9 was drawn.
- 3. Optimal 'k' was deduced from the point where this line maximized distance from the original function.
- 4. Consequently, 'k' was determined to be 3 for effective clustering analysis.



Road accident dataset clustered into three groups

5.3 Model performance evaluation

Table 1 Performance evaluation of classifiers and	S. No		Testing set without new feature			Testing set with new feature				
proposed approach		Classifier	Precision	Recall	f1 score	Accuracy	Precision	Recall	f1 score	Accuracy
	1	K Means	47	42	43	42.25	36	36	35	35.83
	2	LR	85	87	84	86.83	99	99	99	99.13
	3	RF	86	88	87	87.77	100	100	100	99.86
	4	SVM	69	68	65	68.45	76	73	70	73.13
	5	KNN	64	65	62	64.97	68	69	66	68.58

Table 2 The execution time of models (ms)

Model	Training time	Testing time		
K-means	191	2.57		
LR	231	1.29		
RF	399	38		
SVM	566	134		
KNN	9.7	87		
K-means-RF	295	5.71		

5.3 Model performance evaluation

References	Classifier	Dataset	Accuracy		
Gu et al. [21]	PSO-SVM	China	_		
Xiao et al. [52]	SVM, KNN (Ensemble)	I-880 data set	99.33%		
Castro et al. [15]	BN, JR8 and MLP	DVSA—UK	72.39%, 72.02%, 71.70% Respectively		
Al-Radaideh et al. [4]	RF, ANN (backpropagation), SVM	Uk	80.6%, 61.4%, 54.8% respectively		
Casado et al. [14]	LCC, MNL	Spain	-		
Wahab et al. [51]	MLP. SimpleCart, PART	Ghana	72.16%, 73.45%, 73.81% respectively		
Sameen et al. [40]	MLP, BLR, RNN	Malaysia	65.48%, 58.30%, 71.77% respectively		
Fentahun [18]	J48, ID3, PART	Ethiopia	81.21%, 81.01%, 81.18%		
Seid et al. [42]	HMR	Ethiopia	NA		
Abebe et al. [1]	DSA	Ethiopia	-		
Lytin et al. [30]	UBA	Ethiopia	-		

Table 3 Performance comparison of related work models

5.4 ANN experiment analysis

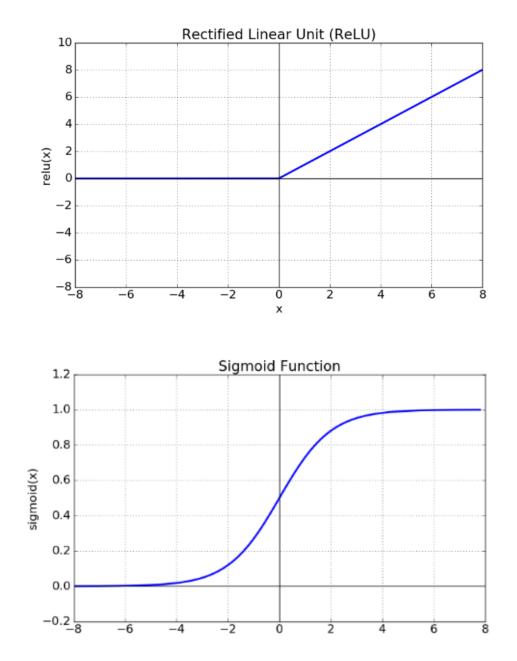
- Input layer \rightarrow Rectifier activation function
- Output layer \rightarrow Sigmoid activation function

Table 4 Test accuracy, loss, and ROC curve value of ANN model with multiple dense layers

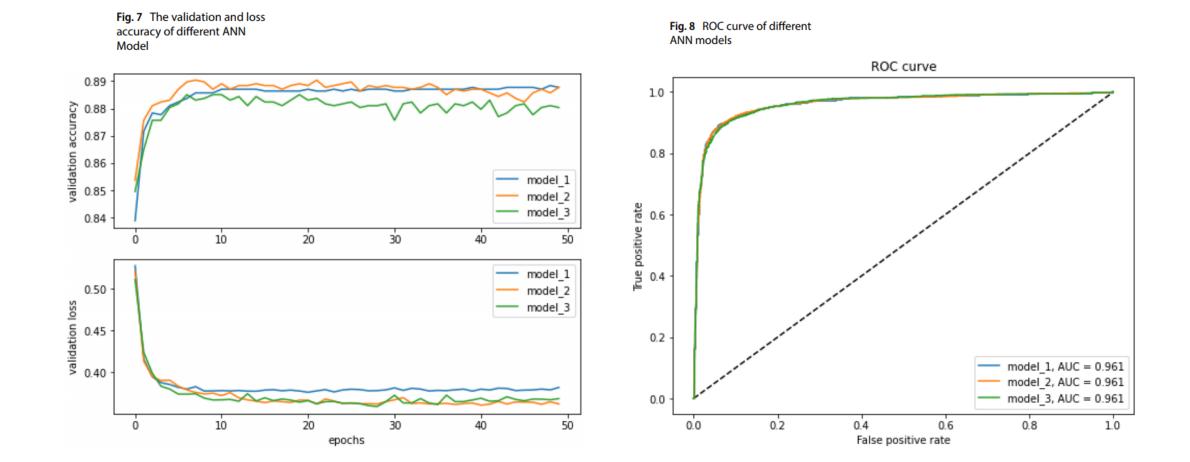
Model	Dense layer	Test accuracy (%)	Test loss	ROC curve (%)
Model ₁	2	88.77	0.3819	96.1
Model ₂	3	88.77	0.3622	96.1
$Model_3$	4	88.03	0.3686	96.1

Table 5 Comparison of ANN and proposed model performance with different metrics (%)

Model type	Precision	Recall	F1 score	Accuracy
ANN	88	88	88	88
Proposed model	100	100	100	99.86



5.4 ANN experiment analysis



5.6 Random forest interpretation

1. Decision Tree

$$f(x) = Cfull + \sum_{k=1}^{M} contrib(x,k)$$

Cfull : Root node value

M : Number of leaves in the tree

contrib(x,k): kth feature contribution in feature vector x

2. Random forest predict function

 $g(x) = \frac{1}{J} \sum_{j=1}^{J} f_j(x)$ $g(x) = \frac{1}{J} \sum_{j=1}^{J} C_j full + \sum_{k=1}^{M} (\frac{1}{J} \sum_{j=1}^{J} contrib_j(x,k))$

J: Number of decision tree

 $f_i(x)$: Prediction functions for each tree

5.6 Random forest interpretation

Serious injuries

- day
 Location
- Driver experience
- Type of vehicle

Minor injuries

- Light condition
- Causality sex

Causality class

• Light condition

- Causality age
- Casualty sex

Causality age

Fatal accident severity

• Driver age

• Service year

• Weather condition

• Casualty class

6. Conclusion

Hybrid Approach Superiority

• Developed method outperforms traditional machine learning methods for RTA dataset severity prediction.

K-Means Integration

• Utilized K-Means clustering integrated with Random Forest classification, showing superior performance over other models. (99.86% accuracy)

Target-Specific Insights

• Highlighted the effectiveness of combining Clustering and Classification to identify key factors for different accident severity classes.

Future Prospects

• Aiming to strengthen model efficacy by exploring additional datasets for further insights and improved accuracy.

Thank You

