
758 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 7, NO. 3, SEPTEMBER 2022

Early Lane Change Prediction for Automated Driving
Systems Using Multi-Task Attention-Based

Convolutional Neural Networks
Sajjad Mozaffari , Eduardo Arnold , Mehrdad Dianati , Senior Member, IEEE, and Saber Fallah

Abstract—Lane change (LC) is one of the safety-critical manoeu-
vres in highway driving according to various road accident records.
Thus, reliably predicting such manoeuvre in advance is critical for
the safe and comfortable operation of automated driving systems.
The majority of previous studies rely on detecting a manoeuvre that
has been already started, rather than predicting the manoeuvre in
advance. Furthermore, most of the previous works do not estimate
the key timings of the manoeuvre (e.g., crossing time), which can
actually yield more useful information for the decision making in
the ego vehicle. To address these shortcomings, this paper proposes
a novel multi-task model to simultaneously estimate the likelihood
of LC manoeuvres and the time-to-lane-change (TTLC). In both
tasks, an attention-based convolutional neural network (CNN) is
used as a shared feature extractor from a bird’s eye view represen-
tation of the driving environment. The spatial attention used in the
CNN model improves the feature extraction process by focusing on
the most relevant areas of the surrounding environment. In addi-
tion, two novel curriculum learning schemes are employed to train
the proposed approach. The extensive evaluation and comparative
analysis of the proposed method in existing benchmark datasets
show that the proposed method outperforms state-of-the-art LC
prediction models, particularly considering long-term prediction
performance.

Index Terms—Vehicle behaviour prediction, automated driving,
multi-task learning, curriculum learning, attention mechanism.

I. INTRODUCTION

ANTICIPATING the future behaviour of surrounding vehi-
cles is a critical function of both Advanced Driving As-

sistance Systems (ADAS) and fully automated driving systems.
Failing to do so may lead to either hazardous driving decisions
or forcing unduly conservative driving, compromising the safety
or efficiency of the driving system, respectively.
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Fig. 1. Example of an LC scenario in a left-hand driving road system. Target
Vehicle (TV): Green Car, Ego Vehicle(EV): Red Car, and Surrounding Vehicle
1 (SV1): Purple Car.

In highway driving, lane change (LC) manoeuvres are con-
sidered to be safety-critical as they can lead to hazardous in-
terference with the traffic in other lanes. A major crash dataset
collected between 2010 and 2017 in the United Arab Emirates
indicates that accidents associated with unsafe LC manoeuvres
are among the main causes of severe injuries in highway driv-
ing [1]. Although monitoring the indicator signals can be a good
detector of LC manoeuvres, studies in USA [2] and China [3]
show that less than 50% of drivers are using signal indicators
for doing an LC manoeuvre. The LC manoeuvres that occur
without proper signalling are often the culprit in accidents. Such
hazards can be detected by analysing the motion of the vehicles,
which is the main focus of this paper. A reliable LC prediction
model in such cases can provide an early warning of emerging
LC manoeuvres of other vehicles. Such information can then
be used by the ego-driver or the automated driving system to
pro-actively make driving decisions and alleviate the risk of
accidents associated with LC manoeuvres. An early manoeuvre
prediction has a particularly higher value in highway driving
scenarios, where the high-speed of vehicles require a more agile
driving style and decision making.

An example of an LC scenario in a highway driving envi-
ronment is illustrated in Fig. 1. In this scenario, the Target
Vehicle (TV) decides to perform a lane change manoeuvre at
time Tintent due to the slow-moving preceding vehicle (i.e., SV1:
Surrounding Vehicle 1). The LC manoeuvre starts at Tstart, as
the vehicle drifts towards the left lane marking. The TV crosses
the lane marking at Tcross and finishes its LC manoeuvre by
stabilizing its lateral position at the centre of the left lane at
Tend. The Ego vehicle (EV), which is already driving on the left
lane, is supposed to decelerate as soon as it realises the imminent
LC manoeuvre by the TV. Therefore, the EV needs to have an
early and reliable prediction of the LC manoeuvre and its key
timings (e.g., Tcross) to perform a smooth and safe deceleration.
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There have been several studies on LC prediction in the
literature. A major group of existing studies has shown to be
able to predict a lane crossing that occurs up to 2.5 seconds
in the future [4], [5], while an LC manoeuvre, from Tstart to
Tend, usually takes between 3 to 5 seconds [6]. This means
that most existing studies can only predict an LC manoeuvre
after Tstart, i.e., after the manoeuvre has already started. These
studies mostly rely on detecting the lateral drift of the TV
towards the lane marking. However, there are fewer clues in
the past motion of the TV for predicting its future manoeuvre
in longer horizons. Therefore, long-term prediction approaches
need to understand the traffic context around the TV, rather
than solely analysing the recent motion of the TV. In recent
years, some studies attempted to extend the prediction horizon
by using deep learning-based models, mainly Long Short-Term
Memories (LSTMs) [7], [8]. However, the use of LSTMs for
long-term LC prediction is impeded by their shortcoming in
extracting spatial interdependency which is required to model
the interaction among nearby traffic agents.

In most existing studies [5], [7], [9]–[12] the problem of
LC prediction is defined as predicting the likelihood of LC
manoeuvres over the next few seconds. In such a formulation, an
LC manoeuvre of the TV occurring early in the future is treated
equally as an LC manoeuvre happening farther in time. As a
result, such an approach cannot inform the EV about the key
timings of the TV’s manoeuvre, which is crucial for safe and
comfortable trajectory planning in automated vehicles.

In this paper, we address the aforementioned shortcomings
by proposing a multi-task attention-based prediction model. We
apply a novel Convolutional Neural Network (CNN) with spatial
attention to a bird’s eye view representation of the traffic context
around the TV to extract relevant features. An attention module
is employed to selectively focus on the most informative areas of
the TV’s surroundings to improve the feature extraction process.
The features extracted by the attention-based CNN are then
used to simultaneously predict the likelihood of LC manoeuvre
and the time-to-lane-change in a Multi-Task Learning (MTL)
approach. Also, two Curriculum Learning (CL) criteria are
introduced during the training phase to increase the generali-
sation of the proposed model. The proposed joint LC and TTLC
prediction model is trained and evaluated using a public large
scale trajectory dataset collected from German highways [13].
The contributions of this work are summarised below:
� A novel multi-task formulation of lane change prediction to

predict both the type and timing of lane change manoeuvre.
� A novel spatial attention module on top of CNN-based

feature extractor to selectively focus on informative areas
around target vehicle.

� Comprehensive evaluation of the proposed model and
some state-of-the-art prediction models in terms of pre-
diction performance and horizon in both regression and
classification formulation.

The rest of this paper is organised as follows. Section II
reviews recent LC prediction approaches based on their input
representation, prediction model, and output type. Section III
discusses the system model and problem formulation.
Section IV introduces the proposed method and its key
components. Section V presents the experiments’ setup for

evaluating the performance of the proposed method, key results
from those evaluations and the discussions of the insights that
can be learned from our performance evaluation. Finally, some
key concluding remarks are given in section VI.

II. RELATED WORKS

Overviews of vehicle behaviour prediction approaches are
presented in [14], [15]. Vehicle behaviour prediction studies
can be divided based on output type into trajectory predic-
tion [16]–[18] and manoeuvre prediction [19]–[21]. A trajectory
prediction model attempts to predict the continuous states of a
vehicle (e.g., x-y location) for each timestep during a prediction
window, while a manoeuvre prediction model anticipates the
type of manoeuvre a vehicle is intended to perform. As a
sub-category of manoeuvre prediction, lane change prediction
has been widely studied in recent years. Studies on lane change
prediction can be further divided into ego vehicle lane change
prediction (also known as driver lane change inference) and
surrounding vehicle lane change prediction, which are sepa-
rately reviewed in [22] and [23], respectively. The focus of this
paper is on lane change manoeuvre prediction of surrounding
vehicles in highway driving scenarios. In this section, we review
lane change manoeuvre prediction studies based on their input
representation and prediction model and we highlight how our
paper is differentiated from them.

A. Input Representation

Different input data can provide clues for an upcoming lane
change manoeuvre. The inputs can be categorised as follow:

1) TV’s States: The state of the TV in recent time-steps con-
tains the main clue for a lane change manoeuvre happening
in near future. Therefore, most lane change detection or
short-term prediction rely only on this type of feature.
TV’s lateral position in the lane, lateral and longitudinal
velocity and acceleration are examples of TV states used
as an input in previous studies [10], [24], [25].

2) Environment States: In early lane change prediction, there
are not enough information in recent TV’s states since this
is the time that the driver is planning to perform a lane
change. The intention of a lane change can form based
on an internal driving goal (e.g., reaching an exit on a
highway) or static environmental conditions (e.g., ending
of a lane in merging scenario) or dynamic environment
conditions (e.g., a slow-moving preceding vehicle). Al-
though it is usually not possible to observe the internal
driving goal of a vehicle’s driver, automated vehicles can
observe the driving environment through perception sen-
sors, V2V/V2I communication and HD maps. Therefore
TV’s states can be augmented with a representation of
static and dynamic environment states for longer-term pre-
dictions. In [7], [11], [26]–[28] a list of interaction-aware
features like relative distance to surrounding vehicles,
relative velocity, and so on has been used to model the
interaction between the TV and surrounding vehicles.
Some of these studies also contain features describing
the driving environment such as distance to the nearest
on- or off-ramp [27] and the existence of the lanes [8],
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[26]. In [29], the features describing the lateral motion
of vehicles have been removed from input representation
to predict very long (5 to 10 seconds) left lane change
manoeuvres. They argue that lateral features are not in-
formative in very long prediction horizons. Some of the
existing studies utilize Deep Neural Networks (DNNs)
to learn relevant features from raw sensor data [5], [9].
Although such a strategy leads to no information loss,
large computational resources are required to learn rel-
evant features from high-dimensional raw sensor data,
which is challenging due to the limited computational
resources of an automated vehicle. Therefore, some stud-
ies try to learn features from a simplified bird eye view
(BEV) representation of the driving environment instead
of raw sensor data [4], [12], [30], [31]. This representation
depicts vehicles as their bounding boxes and the road
markings and it has a significantly lower dimensionality
compared to raw sensor data. Although a BEV repre-
sentation has a larger dimension compared to using a
list of interaction-aware features, it has been shown that
representing TV and surrounding vehicles states as well
as the static driving environment in a BEV image rep-
resentation can facilitate joint feature learning for vehicle
behaviour prediction using deep neural networks [4], [12],
[30], [31]. In this paper, we adopt the same approach
and design a simplified BEV input representation for the
problem of lane change prediction. Section IV-A explains
the details of the simplified BEV representation used in our
study.

3) Driver’s States: Driver’s states such as head position and
gaze movement are usually used when the behaviour of
ego vehicle is being predicted [32], [33]. Such features are
usually not easily observable in the case of surrounding
vehicle lane change prediction. Therefore, the driver’s
states are not considered in our input representation.

B. Prediction Model

A group of existing studies utilise graphical models to predict
LC manoeuvre. Graphical models are probabilistic models for
which a graph, defined using domain knowledge, expresses
the conditional dependencies among input, output, and hidden
random variables. Hidden Markov Models (HMMs), as a sub-
class of graphical models, have been widely used in behaviour
recognition and prediction [34]. In [20] two continuous HMMs
are used to model lane keeping and lane changing behaviour
separately. The model in [20] has been trained and tested on the
NGSIM I-80 dataset with a recall rate around 85% in 0.5 seconds
and 65% in 4 seconds prediction horizons. In [28], a Bayesian
network is used to compute the driver’s contentedness (i.e.,
likelihood of occupancy) for all lanes the driver could drive. The
driver’s contentedness for each lane is then employed to predict
the LC intentions. Their approach relies on lane change intention
labels extracted from human driving in a simulator environment.
In [21] a multi-agent simulation with model-based loss function
for interaction modelling and a Bayesian network classifier has
been used as a combined model-based and learning-based ap-
proach. They have reported the lateral motion prediction results

for prediction horizons up to 2.5 seconds. In [26], a hybrid
Dynamic Bayesian Network (DBN) is adopted to predict LC
intention using a list of interaction-aware features. The latent
variables of the prediction model are pre-trained using simu-
lation data, followed by training on German highway driving
data. Since exact inference is intractable in DBNs, time-series
information is not considered in the inference process. The Re-
ciever Operating Characteristic (ROC) of the proposed approach
has been reported for lane change occurring 3 seconds in the
future. A three-layer DBN has been used in [25] to estimate the
driver LC intention and driver characteristic. Then, a Gaussian
process is exploited to predict trajectory based on predicted
LC manoeuvre. The authors of [25] reported achieving 95%
accuracy in LC prediction; however, the prediction horizon for
this performance has not been reported.

The advantage of graphical models lies in their ability to
interpret the model’s prediction by examining the values of the
graph nodes. However, the drawback of such an approach stems
from their limited expression capabilities since no reasoning
can be done beyond the fixed relation defined between the graph
nodes. In addition, the exact inference in graphical models is
often intractable. Therefore, most prediction approaches using
graphical models are considered for short to medium prediction
horizons up to 3 seconds.

Most recent works exploit DNNs for LC prediction. For
example, fully connected feed-forward neural networks have
been used in [11], [24], [35], [36]. Several existing studies apply
variants of recurrent neural networks to predict LC manoeu-
vre [7], [8], [10], [27], [37], inspired by their success in data
sequence analysis. In [10] and [37], a single LSTM is applied
to TV-only and interaction-based features for LC prediction,
respectively. In [7], a model containing several Gated Recurrent
Unit (GRU) is proposed to model pairwise interaction between
the TV and each of the SVs. Convolutional Neural Networks
(CNNs) have been used in some of the existing studies mainly
to model spatio-temporal dependencies in image-like input data
such as simplified BEV representation [4], [12], [31] or raw
sensor data [5], [9]. In this paper, a convolutional neural network
is also constructed to learn lane change related features from
stacked BEV input representation. In [27], the input features
are categorized into TV’s motion, Right lane SVs, Left Lane
SVs, Same lane SVs and Street features based on which part
of the environment they represent. Then, an LSTM is used
per feature group to create an internal representation of fea-
tures. Finally, an attention mechanism is used to specify the
importance of each group of features for LC prediction in each
data sample. Attention mechanism has been also used in [18]
to pay selective attention to a subset of surrounding vehicles
in similar problem of trajectory prediction. Unlike [18], [27]
where the attention mechanism is applied on each 1D vector
of surrounding vehicles’ states, we propose a spatial attention
mechanism on top of 2D feature maps of convolutional neural
networks. The proposed spatial attention mechanism selectively
focusses on different quarters of the driving environment around
the TV. Unlike previous studies, the traffic situation, including
both static and dynamic contexts of each quarter simultaneously
contribute to attention weights, which allows attending to free
spaces as well as vehicles in each quarter.
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Although DNNs have shown promising performance in LC
prediction, they suffer from a lack of interpretability, which neg-
atively affects the social acceptance, debugging, and validation
of such approaches. The proposed spatial attention mechanism in
this paper can increase the interpretability of our deep learning-
based approach by providing an interpretable intermediate rep-
resentation in the form of attention weights of each quarter area
of the surrounding environment.

There are a few studies that attempt to predict the timing
of lane change manoeuvres [8], [38]. In [38], two quantile
regression techniques, namely Linear Quantile Regression and
Quantile Regression Forests have been compared in time to lane
change prediction. Their approach relies on TV and environment
states and provides probabilistic outputs. The results show that
the Root Mean Square Error(RMSE) of prediction falls below
1 s only in prediction horizons below 1.5 seconds. In a recent
study [8], LSTM models have been thoroughly investigated for
predicting the time until a vehicle changes the lane. The selected
features are a list of interaction-aware features used in their
previous study [39] and the problem is defined as predicting
the time to left lane change and the time to right lane change,
separately.

III. SYSTEM MODEL AND PROBLEM DEFINITION

We assume a semi- or fully automated EV aims to predict
the lane change manoeuvre of a nearby vehicle, called the
TV. Both EV and TV are driving on a straight highway with
an arbitrary number of lanes. There is an arbitrary number of
surrounding vehicles (SVs) driving in the vicinity of the TV.
Similar to most existing studies on LC prediction [4], [7], [10],
[11], [24], [25], [27], [31], we assume a BEV camera installed
on an infrastructure building or a drone is observing the driving
environment, detecting the vehicles, and tracking them while
driving on a road section. The vehicles’ tracking history, as well
as the position of road markings, are assumed to be shared with
the EV for the problem of LC prediction. Note that the vehicles’
tracking data can also be obtained from egocentric perception
sensors (instead of infrastructure sensors) with less coverage
and accuracy due to their limited range and occlusion.We refer
readers to [40] for a comparative study of different perception
approaches for lane change prediction in highways.

We divide the problem of LC prediction into a classification
and a regression sub-problem. The classification problem aims
to estimate the probability of LC manoeuvres occurring during
a prediction window, Tpw. The LC manoeuvres are categorized
into 1) Right Lane Change (RLC), 2) Left Lane Change (LLC),
and 3) Lane Keeping (LK). The value of Tpw determines the
maximum prediction horizon of the prediction model. In this
study, we setTpw = 5.2 sec which enables evaluating the predic-
tion model for long prediction horizons while assures a sufficient
number of data samples to be extracted from the selected dataset
(refer to section V-A). The regression problem aims to estimate
the Time To Lane Change (TTLC). The TTLC is defined as
the shortest time until the centre of the TV crosses either left
or right lane marking. Predicting TTLC is crucial since it is the
first time the TV interferes with the traffic on adjacent lanes. The
input data to both subproblems are the TV’s and its surrounding

vehicles’ (SVs) states and the position of lane markings. during
a temporal observation window of 2 seconds, Tobs = 2 sec.

IV. PROPOSED METHOD

This section presents the proposed multi-task attention-based
LC prediction model and the curriculum learning schemes used
in the training of the model. The processing steps in the proposed
prediction model are summarised as follows:

1) The observation of the TV and its SVs duringTobs are used
to render a simplified BEV representation of the driving
environment for each time-step of Tobs.

2) An attention-based CNN is applied to the temporally
stacked BEV representations to extract informative fea-
tures for LC prediction.

3) The features extracted from the previous step are used
in two separate fully-connected networks to estimate the
probability of LC manoeuvres and the TTLC.

Fig. 2 illustrates the proposed method and its key processing
steps.

A. BEV Input Data Representation

Three binary layers of information are considered in forming
the BEV representation: (1) The vehicle layer is populated by the
2D-bounding boxes, representing the vehicles at a single snap-
shot of the environment, (2) lane layer depicts the lane markings,
and (3) road layer specifies the drivable area. The single-channel
BEV representation is rendered by taking a layer-wise average
of these three layers. Fig. 10 and 11 illustrates example of BEV
representation in RLC and LLC scenarios. Two characteristics
are considered in the BEV representation that facilitates the
feature learning process. Firstly, unlike [4], [12] where the image
is centred on the EV, we centre the BEV representation on the TV
at each time step. This causes the position of lane markings in
the representation to indicate the lateral position of the TV in the
lane, which is one of the clear predictors of an LC manoeuvre.
Centring the representation on the TV also allows encoding
the relative states of the SVs compared to the TV which is
informative in interaction modelling. Secondly, we use a lateral
dimension resolution four times higher than the longitudinal
dimension of the representation. This implies a magnification of
lateral motions of vehicles in the representation which contains
more informative features for the LC prediction problem. The
size of the BEV representation in this study is considered to be
200 by 80 pixels covering 200 meters of the road in the longi-
tudinal direction and 20 meters in the lateral direction. The 20
meters lateral coverage assures that the TV’s adjacent lanes are
always included. The input to the convolutional neural network is
a multi-channel image of size (Tobs ∗ FPS)× 200× 80, where
each channel is a BEV representation rendered for a frame within
observation window Tobs.

B. Attention-Based CNN for Feature Learning

We propose an attention-based CNN to extract relevant spatio-
temporal features from the temporally stacked BEV representa-
tion. Due to the sparsity of the BEV input representation, it is not
required to use a very deep CNN, such as ResNet models [41].
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Fig. 2. Overview of key processing steps of the proposed method.

Fig. 3. Architecture of the CNN model.

Based on our empirical study, we consider a six-layer CNN
including three convolution and three pooling layers. In each
convolution layer, 16 learnable convolutional kernels are used
with a size of 3 ∗ 3. The stride and padding of the kernels are
set to 1 so that the size of the representation doesn’t change
after passing a convolutional layer. Each convolutional layer is
followed by a Maximum Pooling (Max-Pool) layer with a size of
2 ∗ 2 to reduce the dimensionality of input data and a Rectified
Linear Unit (ReLU) activation function. Fig. 3 illustrates the
architecture of the CNN model.

The spatial attention mechanism is proposed to enhance the
performance of feature learning. The attention mechanism, in-
spired by the human brain, tries to selectively focus on a few
relevant parts of the input data to estimate each output. In
this study, the goal of employing an attention mechanism is
to identify and focus on parts of the environment around the
TV that have the most impact on the future behaviour of the
TV. In a driving environment, normally only some part of the
surrounding vehicles are contributing to the next manoeuvre of
a vehicle. For example, a slow-moving vehicle in front usually
leads to an RLC if there is a suitable gap in the right lane. In this
example, the behaviour of SVs driving on the left lane does not
influence the RLC decision made by the TV. Focusing on the
relevant areas of the environment around the TV is expected to
increase the performance of LC prediction. Therefore, we divide
the input representation into four areas, namely, 1) TV’s Front
Right (FR), 2) TV’s Front Left (FL), 3) TV’s Back Right(BR),
and 4) TV’s Back Left (BL). Since the input images are centred
on the TV and vehicles are driving from right to left in input
images, these four areas correspond to top-left, bottom-left,
top-right, and bottom-right of the input images, respectively,
as illustrated in Fig. 4. The local connections in convolution and
pooling layers of the CNN preserve the spatial location of the
extracted features. Hence, the corresponding four areas in the

Fig. 4. Four areas of input representation and their corresponding areas in the
CNN feature map.

CNN feature map, h are selected as the hidden representations
of the respective four areas in the TV’s surrounding environment,
namely, hFR, hFL, hBR, and hBL (see Fig. 4). Note that these
feature maps represents the TV’s surrounding areas for all frames
in the observation window. The attention weight for each area is
estimated using a linear layer with softmax activation function
as follows:

αi = Softmax(Wĥi + b), (1)

where ĥi is the flattened vector of hi. The attention weight for
area i is used to create a mask mi with the same size as h. mi is
filled with values αi in the regions corresponding to hi and zero
elsewhere. The output of feature learning model is computed as
the context vector c:

c =

n∑

i=1

mih, (2)

C. Multi-Task Prediction (MTL)

We leverage MTL in training our proposed prediction model
for both future LC manoeuvre classification and TTLC regres-
sion tasks. Although it is possible to derive the classification in-
formation from TTLC estimates [8], we adopt an MTL approach
to benefit the generalisation gained by training the model on a
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similar parallel task. In addition, since the TTLC regression is
more difficult than the three-class classification of future LC
manoeuvres, the regressor performance can be enhanced by
eavesdroping on features learnt by the classifier.

Fig. 2 provides an overview of the proposed model. The output
of the attention-based CNN feature extractor is shared among
the classifier and the regressor sub-networks. Each of these
sub-networks is a two-layer fully-connected neural network with
ReLU activation function and dropout with a ratio of 0.5. The
classifier network has 128 hidden neurons with 3 outputs each
corresponding to one of the LC manoeuvres. These outputs
are followed by a softmax activation function to decode their
values as probabilities of LC manoeuvres. The regressor network
has 512 hidden neurons with single output that specifies the
predicted TTLC. A ReLU activation function is used at the
output layer of the regression network as negative values are
not accepted for the TTLC. We consider a Cross-Entropy (CE)
and Mean-Squared Error (MSE) loss functions for the classifier
and regressor sub-networks as bellow:

LCE = − 1

n

n∑

i=1

3∑

c=1

yi,c log ˆyi,c (3)

LMSE =
1

n

n∑

i=1

(xi − x̂i)2 (4)

In the above equations, n is the number of the training samples.
yi,c and ˆyi,c are the ground truth and predicted probability of
sample i belonging to class c, respectively. The ground-truth and
predicted TTLC for the sample i are denoted as xi and hatxi,
respectively. The proposed multi-task model is trained based on
the summation of the classifier and regressor losses as bellow:

L = LCE + γLMSE (5)

where γ defines the ratio between the regressor and classifier
losses.

D. Curriculum Learning (CL)

We utilise curriculum learning based on two criteria specific to
the LC prediction problem. First, predicting the LC manoeuvre
in samples with smaller TTLC is generally easier compared
to samples with larger TTLC. The reason is that as we get
closer to the time when the TV crosses the lane marking, more
explicit predictors can be found in the TV’s motion. As the
TTLC increase, the chance of mistakenly predicting an LC as an
LK manoeuvre increases, until TTLC > Tpw where the future
manoeuvre is actually considered as LK. Therefore, we start
training the network with samples with near-zero TTLC and
gradually expose samples with larger TTLC to the prediction
model. Second, predicting a class within a three-class classifi-
cation task is normally considered easier than regressing a con-
tinuous variable. Hence, we start the training process by giving
more importance to the classification task and gradually shift
the focus to the regression task. This is achieved by increasing
the loss ratio γ in (5) from 0 to 1 during the training phase.
Table I shows the TTLC and the loss ratio profile used during
the training process.

TABLE I
VALUES OF CL PARAMETERS DURING INITIAL TRAINING EPOCHS AND

REMAINING TRAINING EPOCHS

Max included TTLC determines the maximum TTLC of included data samples
in a epoch.

V. PERFORMANCE EVALUATION

This section describes the evaluation of the proposed LC pre-
diction method. First, the dataset and the LC scenario extraction
steps are presented. Then, the implementation details of the
proposed method are explained, followed by a discussion of the
evaluation metrics. Next, the quantitative results comparing the
proposed method with SOTA baseline models and the qualitative
results are presented. Finally, an ablation study is performed on
key components of our proposed method.

A. Dataset and LC Scenario Extraction

The Highway Drone Dataset (highD) [13] consists of natural-
istic vehicle trajectory data recorded at German highways using
a drone. It contains the trajectories of 110500 vehicles observed
over a highway segment of 420 meters at six different locations.
We extract the LC and LK scenarios from the highD dataset
to train and evaluate our proposed LC prediction method. An
LC scenario is a group of data samples from a single vehicle
with TTLC values ranging from 0 to Tpw. Each data sample
in an LC scenario at a given time t0 contains the observation
of the vehicles’ trajectories in the driving environment during
[t0 − Tobs, t0 − 1]. To have a balanced number of data samples
per each value of TTLC, we do not consider LC scenarios where
the corresponding trajectory data is not available for the full
duration of Tobs + Tpw sec before the lane crossing. All the
samples within an LC scenario are labelled as RLC or LLC
according to the direction of the manoeuvre at the end of the
scenario. An LK scenario is defined as a group of data samples
from a single vehicle with TTLC > Tpw. Fig. 5 illustrates an
example of LC and LK scenarios. Similar to LC scenarios, we
consider Tpw ∗ FPS data samples within an LK scenario. In the
highD dataset, the number of LK scenarios are much higher than
LC scenarios. However, to keep the dataset balanced, we under-
sample the LK class so that the number of LK samples is equal
to the average between the number of RLC and LLC samples.
The challenging LK scenarios for training the prediction model
are the ones that the TV changes its lane shortly after Tpw, since
they can be easily misclassified as LC. Therefore, it is desirable
to have more number of such challenging samples. However,
there is not a sufficient number of such LK samples in the highD
dataset due to the limited length of the covered road section. The
highD dataset is published as 60 spreadsheets, from which we
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Fig. 5. Examples of (a) RLC and (b) LK scenarios. In LK scenarios, the TV
may change its lane after the Tpw cut-off.

select the data in the first 50 files as training data, the next 5 files
as validation data, and the remaining 5 files as test data. In total,
we have extracted 7487, 932, and 698 LC/LK scenarios from
training, validation, and test data, respectively.

B. Implementation Details

We train the proposed model and the re-implemented models
from the literature on extracted LC/LK scenarios in the train-
ing set of the highD dataset. To train our proposed prediction
model, Adam optimiser [42] is used with a learning rate of
0.001 and a maximum of 20 training epochs. The early-stopping
technique on validation loss function is used to avoid over-fitting.
All the models have been implemented using the PyTorch frame-
work [43] and are trained and evaluated on a single GeForce
RTX 2080 Ti GPU. We use a batch size of 64 during the
training period. The source code of this study is available at
https://github.com/SajjadMzf/EarlyLCPred.

C. Evaluation Metrics

In this subsection we discuss the metrics we used in evaluation
of the future LC classifier and TTLC regressor.

1) Classification Metrics: Similar to previous studies, we
report accuracy, precision, recall and F1 score over all data sam-
ples in the test dataset. However, relying on such metrics is not
sufficient for a comprehensive evaluation of a prediction model,
especially for applications in automated driving. A reliable LC
predictor is expected to have high recall particularly in samples
with short TTLC since missing such LC samples can create
safety-related issues for the EV and the surrounding traffic. To
this end, we measure the recall (a.k.a. True Positive Rate) of the
prediction model with respect to the actual TTLC of the data
samples.

Precision, recall, and F1 score are usually defined for a binary
classifier. To extend them to a multi-class problem, one can use
the “one-vs-all” approach. However, we consider both the RLC
and LLC classes as positive classes (similar to [26]), since both

TABLE II
CONFUSION MATRIX USED FOR LC PREDICTION

*TN: True Negative, TP: True Positive, FP: False Positive, FN:
False Negative

are the rarely occurring manoeuvres that we are interested in
predicting. Therefore, we consider the confusion matrix for the
LC prediction problem as Table II. Note that the data samples
with RLC or LLC labels which are classified incorrectly in LLC
or RLC classes, respectively, are considered in both FN and FP.
The reason is that in such cases the prediction model misses
the prediction of the type of LC and generates an incorrect LC
alarm.

In addition to having a high recall, an LC prediction model is
expected to have a low rate of false LC alarms (False Positive).
Although False alarms may not create safety issues, they de-
crease the comfortability of the driving system because the high
rate of false alarms causes frequent, unnecessary slow-downs
by the EV. The trade-off between the False Positive Rate (FPR)
and True Positive Rate (TPR) of a classifier is reported in terms
of the Receiver Operating Characteristic (ROC) Curve and the
Area Under the ROC Curve (AUC) of the prediction model.

To measure the average prediction horizon of a prediction
model, we report the following two metrics, similar to [36].
� First prediction time, denoted by τf : is the time between

the first correct prediction of the manoeuvre class and the
Tcross, averaged on all data samples.

� Robust prediction time, denoted by τc: is the time between
the first moment when the model starts to continuously pre-
dict correctly and the Tcross, averaged on all data samples.

2) Regression Metrics: Although we use the MSE loss func-
tion in the training phase, we adopt the RMSE metric to evaluate
the performance of the TTLC prediction. The reason is that
RMSE is more understandable than MSE since it has the same
physical unit as the output data (i.e., seconds). To evaluate the
performance of the prediction model for different TTLCs, we
use the box plot of the predicted TTLC for each actual TTLC,
specifying the median values of the predicted TTLC.

D. Quantitative Results

The results of an LC prediction model depends on the selected
dataset and preprocessing steps used for training and evaluation
of the model. Factors such as the size of the dataset, the level of
noisiness, traffic density, and LC scenario extraction steps can
impact the prediction model’s results. In addition, parameters
of the problem definition can influence the overall performance
reported for a prediction model. For example, selecting a smaller
prediction window Tpw results in better overall prediction per-
formance since it is generally easier to predict manoeuvres with
shorter TTLC. To do a fair comparison among our proposed
model and the existing solutions, we re-train and evaluate some
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TABLE III
COMPARISON OF THE PROPOSED LC PREDICTION MODEL WITH SOTA ON THE TEST SET OF HIGHD DATASET

baseline models from the literature on the same dataset, using
the same preprocessing steps and parameters of the problem
definition used in this study. We select the following SOTA
approaches, where an implementation code or details of im-
plementation are provided:
� MLP: Multi-Layer Perceptrons (MLPs) have been used in

some existing studies [24], [29], [35], [36]. Here, we re-
implement a two-layer MLP with 512 hidden neurons and
a ReLU activation function. We consider two sets of input
features for the MLP model:
1) MLP1: In [8], [39], a study has been performed on

a large-scale dataset to select informative features for
MLP and LSTM networks (see Table V in [8]). The
study in [8] provides 21 features from which we select
18. The authors did not provide the details of how to
extract the other 3 features from highD dataset.

2) MLP2: In [29], MLPs are used to predict left lane
changes. The authors argue that not including lateral
distance features results in better performance in very
long prediction horizons (> 5sec). In [29], they have
only considered relative features of the TV w.r.t. pre-
ceding vehicle, left preceding vehicle (PV), and left
following vehicle (LFV). In our comparison, the same
set of relative features is used also for the right preceding
vehicle (RPV) and right following vehicle (RFV) to
extend their study to both right and left lane change
prediction.

� LSTM: Several existing studies on LC prediction [7],
[8], [27] have used LSTM due to its power in processing
data sequences. A single-layer LSTM model is used with
a hidden state size of 512 followed by a two-layer fully
connected neural network with a hidden state of 128 and
512 for classification and regression tasks, respectively.
Two different set of input features are used for the LSTM
model:
1) LSTM1: Similar to the MLP model, we adopt the fea-

ture list used in [8].
2) LSTM2: The rationale behind this feature set is to:

(1)describe TV’s motion (Features 1 to 5), (2) detect
slow-moving preceding vehicle (Features 6 and 7), (3)
high-speed following vehicle (Features 8 and 9), and
(4) detect the gap in right/left lane (Features 10 to 18)

� CS-LSTM: Convolutional social pooling LSTM developed
by Deo and Trivedi [31] combines the power of CNNs in

Fig. 6. Terminology of the TV’s surrounding vehicle.

spatial interaction modelling with the power of LSTMs in
modelling dynamics of each vehicle. The code published
by the authors is used to re-train and evaluate their model
with our preprocessed dataset and the parameters used in
our problem definition.

Table IV contains the lists of features used for each baseline
prediction model. The terminology on the TV’s surrounding
vehicles used in the feature lists is illustrated in Fig. 6. Table III
shows the results of the selected models for both classification
and regression tasks and the results of the proposed model in the
dual-task. In the classification task, the proposed model outper-
forms SOTA approaches with an increase of 4% in accuracy and
3% in F1-score. The LSTM1 and LSTM2 models achieve the
second-best performance in classification with 0.82 F1-score.
Although the MLP1 and LSTM1 models achieve best precision
and recall, respectively, in total they achieve lower F1-scores
compared to proposed approach. In regard to the prediction
horizon, the LSTM2 model ranks first among selected models
from the literature by 3.76 seconds robust prediction time.
Nevertheless, the proposed model outperforms CSLSTM by 0.3
seconds in the robust prediction time metric. In the regression
task, the proposed model improves the RMSE metric by around
0.2 seconds compared to the LSTM network used in [8].

To evaluate the LC prediction performance at different like-
lihood thresholds, we plotted the ROC curve in Fig. 7. The area
under the curve (AUC) is reported in Table III. The proposed
method outperforms SOTA by around 2% in AUC and has a
higher True Positive Rate (TPR) for different thresholds com-
pared to SOTA. Note that even with 100% False Positive Rate
(FPR), none of the models achieves 100% TPR. The reason
is that there still might be some samples within the positive
classes that are classified in wrong positive classes (i.e., RLC
data classified as LLC data and vice versa). As we mentioned
earlier such samples are reported as both FP and FN of the
prediction model. The proposed model, compared to the reported
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TABLE IV
LIST OF FEATURES FOR BASELINE MODELS IN COMPARITIVE STUDY

Fig. 7. Receiver Operating Characteristics (ROC) Curve of the proposed
method and SOTA on highD dataset with prediction window Tpw of 5 seconds.

SOTA models, reduces the number of such samples by more than
half, as indicated in Fig. 7.

Fig. 8 reports the recall (a.k.a. TPR) vs the TTLC. Both the
proposed and the CSLSTM models have close to 100% recall in
predictions with TTLC less than 1.5 seconds, while the MLPs
and LSTMs miss at least 10% of LC manoeuvres occurring
in less than 1.5 seconds. As discussed previously, any missed
short-term predictions can lead to safety-related issues. In terms
of long term prediction, the proposed method significantly out-
performs the SOTA methods. For instance, in samples with
TTLC equals 5.2 seconds, which is the maximum prediction
horizon, the proposed method achieves 60% recall which is an
improvement of around 50% compared to the SOTA models.
Note that improving the performance of long-term predictions

Fig. 8. Percentages of Recall vs TTLC of the proposed method and SOTA on
the test set of highD dataset.

is challenging because generally there is no explicit change in
the TV’s behaviour for LCs that occur far in the future (i.e.,
more than 3 seconds). Therefore, the prediction model needs
to infer the occurrence of an LC by extracting clues from the
traffic context around the TV, which makes long-term predic-
tion more challenging. The MLP1 [29], which relies only on
longitudinal features,achieves comparative long-term prediction
performance compared to other baseline models, while performs
poorly in short-term prediction. This can be because of not using
lateral features which contains clear clues for short-term lane
change predictions.

To evaluate the TTLC regression performance, we report the
box plot for all TTLC prediction errors on the test dataset in
Fig. 9. The results show that samples with a higher TTLC
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TABLE V
PREDICTION PERFORMANCE AND ATTENTION WEIGHTS FOR THE EXAMPLE RLC SCENARIO IN FIG. 10

TABLE VI
PREDICTION PERFORMANCE AND ATTENTION WEIGHTS FOR THE EXAMPLE LLC SCENARIO IN FIG. 11

Fig. 9. Box plot of the TTLC predictions error (TTLCpredicted −
TTLCground truth) on test data of highD.

generate predictions with higher median error and variance. In
addition, for TTLC greater than 3.2 seconds the model tends to
predict TTLCs less than actual values of TTLC with a median of
error greater than 0.5 seconds. This can be explained by the fact
that samples with TTLC greater than 3 seconds do not exhibit
any explicit change in lateral movement of the TV. Therefore,
it is not possible to estimate the lane crossing time using the
information in lateral speed and distance to lane marking.

E. Qualitative Results

Two examples of RLC and LLC scenarios are represented in
Figs. 10 and 11. The model’s predictions and estimated attention
weights in frame 10, 20, and 30 of these example scenarios are
provided in Tables V and VI.

In Fig. 10, the TV (i.e., the blue truck) is going to complete
an overtake of a slow-moving truck on the right lane (i.e., the
red truck) by performing an RLC manoeuvre. At frame 10, the
model predicts a 50% chance for LK in the next 5.2 seconds
and a 48% chance for an RLC. The TV starts to move towards
the right lane marking at frame 16. The prediction performance
at frame 20 shows that the estimated likelihood of an RLC
manoeuvre is increased to 85%. The clues of such a manoeuvre
can be found in the available gap in the right lane in front of the
slow-moving truck. At frame 10, where the prediction model

TABLE VII
RESULTS OF ABLATION STUDIES ON KEY COMPONENTS OF THE PROPOSED

METHOD USING THE VALIDATION SET OF THE HIGHD DATASET

0* C: Classification, ** R: Regression

gives almost equal possibilities to the LK and RLC manoeuvres,
the most attention is given almost equally to the front right
and back right of the TV. However, as the model becomes
more confident in predicting the RLC manoeuvre the attention
mechanism increases its focus on the back right area, where the
slow-moving vehicle is located.

Fig. 11 shows the emergence of an LLC manoeuvre by
the TV due to a slow-moving vehicle in front of the TV. In
frame 10, the model confidently predicts the LLC manoeuvre
5.2 seconds before crossing the left lane marking, despite no
lateral movement of the TV within frames 0 to 10. The model
continues to predict the LLC manoeuvre correctly as the TV gets
closer to the slow-moving proceeding vehicle and finally starts
to move toward the left lane markings. The focus of the attention
mechanism during these frames are on the traffic on the left lane,
with more focus on the front left area. This could be explained
by the higher information in the left lane for the predicted LLC
manoeuvre. The video uploaded in [44] explains more examples
of LK and LC scenarios and the model performance.

F. Ablation Study

In this subsection, we investigate the impact of the key compo-
nents of the proposed prediction model by evaluating the model
performance with different combination of these components.
We use the AUC and RMSE on the validation data as evaluation
metrics of classification and regression tasks, respectively.
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Fig. 10. Example of RLC scenario. Four attention areas are specified in BEV image at frame 2 as an example. In visualisations at frame 10,20, and 30, the TV
is depicted with blue, the vehicles within the cropped BEV image are depicted with red, and remaining vehicles are depicted with gray colours.

Fig. 11. Example of LLC scenario. Four attention areas are specified in BEV image at frame 2 as an example. In visualisations at frame 10,20, and 30, the TV is
depicted with blue, the vehicles within the cropped BEV image are depicted with red, and remaining vehicles are depicted with gray colours.
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Table VII shows the results of the ablation study on Multi-Task
Learning (MTL), Attention Mechanism, and Curriculum learn-
ing based on MTL loss and TTLC order. In this study, the CNN
model (see Fig. 3) is used as a baseline and we gradually add the
components to investigate their impact in both future LC clas-
sification and TTLC regression tasks. The results in Table VII
shows that using the attention mechanism can enhance the AUC
of the classifier by around 3% and slightly decrease the error of
the regressor. On the other hand, the MTL when used without
attention and curriculum learning, can degrade the performance
of the classification task and does not provide improvements for
the regression task. However, the MTL is capable of improving
the results and achieving the best performance when combined
with other key components of the prediction model.

VI. CONCLUSION

This paper proposed a multi-task attention-based CNN model
for the early prediction of LC manoeuvres in highway driv-
ing scenarios. The prediction model was trained and evaluated
using a large-scale naturalistic trajectory dataset. The results
shows that the attention-based CNN is capable of extracting
interaction-aware features from the surrounding traffic required
for long-term prediction. The multi-task approach, boosted by
two novel curriculum learning schemes, enables TTLC and ma-
noeuvre likelihood prediction using shared extracted features.
Furthermore, the proposed model outperforms selected SOTA
LC prediction approaches, demonstrating a reliable short-term
prediction and 1.5 times better long-term prediction perfor-
mances.

In this study, we trained and tested our model on a naturalistic
trajectory dataset recorded using a camera installed on a drone.
Such a camera provides a wide and unobstructed view of the en-
vironment, while the on-board perception of automated vehicles
is impaired with occlusion, sensor noise and limited field of view,
which can create uncertainties in observing surrounding vehi-
cles. Our future research will focus on quantifying the impact of
these input uncertainties on the lane change prediction problem.
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