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1.  Introduction

Lane changing maneuvers have a fundamental impact on 
macroscopic and microscopic characteristics of traffic flows 
due to the interference effect they have on surrounding vehi-
cles (Daganzo et al. 1999; Mauch and Cassidy 2002; Sasoh 
and Ohara 2002; Uddin and Ardekani 2002; Al-Kaisy and 
Hall 2003; Chen et al. 2004; Al-Kaisy and Jung 2005; Al-Kaisy 
et al. 2005, Sarvi and Kuwahara 2009). 

One of the important effects of lane changing maneuvers 
on traffic flow characteristics could be speed and traffic flow 
oscillations. During heavy traffic conditions, the oscillation 
appears as a result of lane changing rather than car following 
(Mauch and Cassidy 2002; Laval and Daganzo 2006). When 
a vehicle changes lanes from one lane to another, this can 
have the effect of a capacity drop with shockwaves generated 
in both lanes (Sasoh and Ohara 2002; Jin 2010). Frequent 
lane changing maneuvers in merging, diverging and weaving 
areas can create bottleneck points in freeways and result in 
flow breakdown under heavy traffic conditions (Cassidy and 
Bertini 1999; Daganzo et al. 1999; Hoogendoorn and Bovy 
2001; Daganzo 2002; Banks et al. 2003; Wall and Hounsell 
2005). The flow breakdown which can arise from the lane 
changing maneuvers may potentially reduce the freeway 
safety (Wright 2006). Hence, developing an accurate lane 
changing model for drivers is an important component of 
model development. 

Lane changing models have application in a variety of 
traffic and transportation studies including transportation 
planning and development of traffic management policies 
(Adelakun and Cherry 2009; Yang and Regan 2009). To 
increase freeway capacity and traffic safety, numerous studies 
have examined different lane restriction strategies for differ-
ent vehicle types including heavy vehicles (Cate and Urbanik 
II 2003; Chen et al. 2004; Al-Kaisy and Jung 2005; Adelakun 
and Cherry 2009; Yang and Regan 2009). Understanding 
the factors which influence drivers’ lane changing behavior 
and developing capacities to model those decisions, has an 
important role to play in the development of traffic manage-
ment strategies. Design and assessment of traffic policies is 
very difficult in real transportation networks due to the cost 
and risks of field trials. However, microscopic traffic simu-
lation packages provide a virtual environment to evaluate 
new traffic management policies and measure their effects. 
Microscopic traffic simulation packages are capable of ana-
lyzing traffic behavior under different lane configurations, 
traffic compositions and traffic flow conditions (uninter-
rupted and interrupted). They have seen application in 
a variety of traffic and transportation studies. Due to the 
increasing reliance on microscopic traffic simulation soft-
ware, it is important to improve their accuracy in modeling 
drivers’ decisions. One of the essential components of any 
microscopic traffic simulation softwares is lane changing 
models. Therefore, it is important to ensure that the lane 
changing behavior of drivers is accurately captured in these 
models.

This paper reviews the existing lane changing models 
and assesses their strengths and weaknesses. In Section 2, 
existing lane changing models are classified according to 
their characteristics and application. A distinction is drawn 
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between ‘Driving Assistance Models’ and ‘Driving Decision 
Models’ with the latter being the primary focus of this paper. 
The ‘driving Decision Models’ are examined in detail in sec-
tion 3 prior to an identification of the major limitations of 
the existing lane changing models in Section 4. Finally, sec-
tion 5 summarizes the finding and conclusions of the paper 
and provides suggestions for further model development.

2. A  classification scheme for lane 
changing models

Different approaches taken in lane changing studies can be 
classified as shown in Figure 1. In recent years, many studies 
have been focused on the scope for driving assistance systems 
to enhance road capacity and road safety (Lygeros et al. 1998; 
Nagel et al. 1998; Knospe et al. 2002; Hatipoglu et al. 2003; 
Mar and Lin 2005). 

Driving assistance models can be classified as either 
collision prevention models or automation models. Both 
of these model types consider the steering wheel angle and 
lateral motions to control the lane changing performance 
of vehicles. Collision prevention lane changing models are 
developed to control drivers’ lane changing maneuvers 
and assist them to execute a safe lane change. The collision 
prevention models are intended to improve road safety. 
Automation models are applied to perform the driving 
tasks either partially or entirely. Many different configura-
tions are defined for models in this category such as lane 
change or side crash avoidance systems. Those applications 

involve automotive adjustments to the steering wheel angle 
of vehicles to control their lateral motion and reduce dan-
gerous lane changing maneuvers (Lygeros et al. 1998; Nagel 
et al. 1998; Maerivoet and Moor 2005; Eidehall et al. 2007; 
Salvucci and Mandalia 2007; Doshi and Trivedi 2008; Kiefer 
and Hankey 2008; Li-sheng et al. 2009).

The other category of lane changing models focuses on 
drivers’ lane changing decisions under different traffic con-
ditions and under different situational and environmental 
characteristics. While responding to the surrounding envi-
ronment, drivers’ decisions can be classified as either stra-
tegic, tactical and operational (Sukthankar et al. 1997). This 
classification is based on the required time for executing the 
decisions. The strategic level is the highest decision level and 
deals with drivers’ decisions which require over 30 seconds 
making and executing. Strategic level decisions are usually 
made before the start of trip and include the goal or purpose 
of the trip and choice of route. A driver’s destination choice, 
mode choice and route choice are examples of strategic driv-
ing decisions (Alexiadis et al. 2004). While executing the 
strategic level decisions, a series of tactical decisions are made 
by the drivers. At the tactical level, maneuvers are selected 
to achieve short term objectives such as a decision to pass 
a slow moving vehicle or maintaining the desired speed. At 
the tactical, or intermediate, decision level, the time required 
for making and executing the decisions is between 5 and 30 
seconds (Alexiadis et al. 2004). At the lowest decision level or 
the operational level, the maneuvers are converted to control 
operations. At this decision level, drivers decide about the 
maneuvers to control their vehicles. These take place on a 
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Figure 1. Classification of available approaches in lane changing studies.
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time scale of less than five seconds and include decisions 
such as whether or not to accept a gap (Alexiadis et al. 2004).

Lane changing decision models can be categorized as 
either tactical or operational since they are not made at the 
strategic level. In tactical lane changing decision models, 
drivers make their lane changing decisions based on current 
and anticipated future characteristics of the surrounding 
traffic. In operational lane changing decision models, the 
drivers’ lane changing decision only depends on limited 
information on the current characteristics of the surround-
ing traffic. In operational lane changing decision models, 
drivers make very short term anticipations to decide about 
their lane changing maneuvers (El Hadouaj et al. 2000). In 
real traffic situations, drivers make tactical and operational 
decisions for their lane changing maneuvers based on the 
current characteristics of the surrounding traffic and their 
anticipated future characteristics of the surrounding traffic 
(El Hadouaj et al. 2000).

A simple illustration of tactical lane changing decision of 
a driver is depicted in Figure 2. In this figure, the driver of the 
subject vehicle (vehicle A) decides to take the exit off-ramp. 
Decision to execute a lane changing maneuver to take the exit 
off-ramp is an operational lane changing decision. However, 
the driver is obstructed by a slow moving vehicle (vehicle B).

In this example, depending on the distance to the exit 
off-ramp, the traffic condition and also the characteristics 
of the driver and vehicle, the driver may have two different 
responses. The first response is remaining in the lane which 
is nearest to the shoulder and accepting the speed limitation 
caused by the slow moving vehicle in order to remain in 
the correct lane to take the exit off-ramp (Figure 2.a). The 
alternative is executing a lane changing maneuver to pass 
the slow moving vehicle and then taking the exit off-ramp 
(Figure 2.b).

Lane changing decision models underpin the micro-
scopic traffic simulation packages being applied increasingly 
in research and practice. These models are the primary focus 
of this review and are considered in greater detail in the fol-
lowing section.

3. D riving decision models

In exploring the range of lane changing decision models, 
we adopt the conventional distinction between tactical and 
operational lane changing decisions. We define a two type 
classification of lane changing decision models: those that 
use an explicit search process to estimate the future position 
of drivers and those that look for associations with surround-

(b) Response 2: Passing the slow 
moving vehicle and taking the 
exit off-ramp. 

(a) Response 1: Remaining behind 
the slow moving vehicle and 
taking the exit off-ramp. 

Figure 2. A simple illustration for the tactical lane changing decision.
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ing traffic characteristics. In the first case, it is necessary to 
estimate the position of vehicles in the near future as well 
as to estimate the drivers’ lane changing decision as a result 
of the choices they face. In this way, a driver’s decision to 
execute a lane changing maneuver (the operational lane 
changing decision) is based on traffic characteristic of the 
surrounding vehicles. However, the drivers’ tactical lane 
changing decision is according to estimated results of search 
algorithms. In the other category of model, those based on 
traffic characteristics, the drivers’ tactical and operational 
lane changing decisions are estimated according to charac-
teristics of the surrounding traffic. A number of lane chang-
ing decision models which are based on either an explicit 
search algorithm or correlation with surrounding traffic 
characteristics, are reviewed separately in the subsections 
which follow.

3.1. L ane changing decision models based 
on a search algorithm 

The concept of tactical decisions has seen application in 
computer science and robotics. Simulating drivers’ decisions 
is similar to designing reactive robots. In contrast to robot-
ics, where the robot’s objective is to find an optimal solution 
for the problem it faces, the drivers decisions do not usually 
correspond to optimal solutions (Sukthankar et al’s 1997). 
This is due to the fact that the drivers’ decisions are based on 
imprecise perceptions and information. 

In lane changing decision models based on search algo-
rithm, the drivers’ lane changing execution is the result of 
their tactical and operational lane changing decisions. In 
this model type, drivers’ tactical lane changing decision is 
based on search algorithms while the drivers’ operational 
lane changing decisions are based on surrounding traffic 
characteristics. The search algorithms which are originally 
used in computer science and robotics are used to estimate 
the drivers’ lane changing decision and therefore, the near 
future position of vehicles.

Schlenoff et al. (2006) developed PRediction In Dynamic 
Environment (PRIDE), which is a hierarchical framework 
for moving object prediction which incorporates multiple 
prediction algorithms into a single framework. They tried to 
develop a framework in which the results from a short term 
prediction algorithm can be used to strengthen or weaken the 
results of a situation based long term prediction algorithm. 

In Schlenoff et al long term prediction algorithm, each 
vehicle’s current position and speed is used as an input to 
the algorithm. For each possible future action (e.g. accel-
eration, changing lanes), the algorithm creates a set of next 
possible positions and allocates a cost to each action. The 
cost reflects the danger to which a driver would be exposed 

by performing an action with a higher cost reflecting greater 
danger. The cost is calculated based on traffic characteristics 
of the surrounding vehicles and the distance of the vehicle 
from surrounding obstacles. The total cost is assumed to be 
the sum of all costs associated with performing each action. 
According to the total cost of each action, the algorithm com-
putes the probability of performing that action by the driver. 
The algorithm also predicts trajectories of each vehicle, based 
on the possible path which the vehicle will take in predeter-
mined time intervals. Then, the algorithm recalculates the 
vehicle’s position set and the probability that the vehicle will 
be placed in each position. Finally, the future position of each 
vehicle is determined according to the highest probability of 
the locations. To combine the results of the short term and 
long term prediction algorithms, they developed a new meth-
odology. For each vehicle, a set of positions and associated 
probabilities are determined and the distance between the 
positions obtained from the two algorithms is computed. If 
the distance is less than a threshold, no adjustment is made 
and the most probable position from the long term predic-
tion algorithm is then used. If the distance is more than the 
threshold, the distance between the positions predicted by 
the short term and long term prediction algorithms is calcu-
lated. Then, the position with the least distance is accepted 
as the next position and all other probabilities are adjusted 
accordingly.

Schlenoff et al. graphically compared the estimated posi-
tions with the observed positions from actual field data to 
assess the accuracy of the short term and long term predic-
tion algorithms. They reported that the short term prediction 
algorithms predict the future position of the vehicles with the 
minimum difference to the observed positions when focused 
on a time horizon of two seconds. Long term prediction 
algorithms were found to predict the future position of the 
vehicles with the minimum difference to the observed posi-
tions for a prediction horizon up to ten seconds.

Schlenoff et al. compared the results obtained from the 
short term and long term prediction algorithms to replicate 
the decisions of the subject vehicle driver and the drivers 
of surrounding vehicles at the same time. However, they 
considered only the current characteristics of vehicles (e.g. 
positions, speeds) to estimate their future positions and did 
not consider each driver’s perception of other drivers’ prob-
able decisions. They assumed that none of the surrounding 
vehicles execute any lane changing maneuvers. In addition, 
they considered the interaction of vehicles only by the prob-
ability of a collision between them.

Webster et al. (2007) developed a lane changing decision 
model based on a forward search algorithm. The forward 
search algorithm generates a branching tree of sequential 
actions for each modeled vehicle at each time step. This algo-
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rithm considers the changes in the states of the subject vehi-
cle and the surrounding vehicles to generate the branching 
tree of sequential actions. Each branch represents a particular 
action which is selected by the driver and the events which 
would probably have occurred as a result of this action. 
Finally, the sequence of actions leading to the best outcome, 
the minimum travel time, is selected and the subject vehicle 
driver applies the first action of that sequence.

Webster et al. compared their lane changing decision 
model to a basic lane changing decision model based on traf-
fic characteristics, reflecting Gipps’s lane changing structure 
(Gipps 1986). Gipps’s lane changing model will be explained 
in the following section. In the basic lane changing deci-
sion model, if a lane change is possible, then the target lane 
is selected. The target lane is selected as the lane with the 
greatest allowable speed. The final stage is acceptance of a 
sufficient size gap for the maneuver. The drivers verify the 
gap size in the target lane before changing lanes and check 
the speeds of the vehicles at either end of the gap to ensure 
the gap is of sufficient size. The lane changing decision model 
developed by Webster et al. uses the same gap acceptance 
criteria as applied in the basic lane changing decision model. 
In their lane changing decision model, the lane changing 
decision is made using the information from the forward 
search tree, which is constructed at each time step that the 
subject vehicle has an available gap in either adjacent lane. 
The forward search tree is built starting at an initial time step, 
considering the speeds and positions of the subject vehicle 
and all surrounding vehicles upstream or downstream of the 
subject vehicle within a view distance specified as a model 
parameter. In the forward search algorithm, the subject 
vehicle is represented at its original position and speed at 
the initial time step, and then control is turned over to the 
driver decision model. In addition, the surrounding vehicles 
are represented as they actually travel and based on vehicle 
trajectory data. 

Webster et al. calibrated their lane changing decision 
model using real vehicle trajectory data. To calibrate the 
model, they minimized the number of simulated lane chang-
ing maneuvers which did not occur in real traffic (Equation 
1).

	 ULC = Σ1
N i = 1

N

δi	 (1)

Where, ULC is the lane change model performance index, 
i is the number of time steps over the duration of the simu-
lation, N is the total number of time steps and δi = 0 if the 
estimated lane changing maneuver (left, right, or no lane 
change) equals observed lane changing maneuver at time 
step i and 1 otherwise.

To test the accuracy of their lane changing model, they 
used observed trajectory dataset. They simulated 70 vehicles 
and calculated the lane change model performance index 
(ULC), for each individual vehicle. The mean value of the 
ULC for the basic lane changing model and the Webster’s 
model were 0.045 and 0.040 respectively. The results showed 
that for 22 simulated vehicles, the lane change performance 
index of Webster’s model was smaller than the basic lane 
changing model which indicates the better performance of 
Webster’s model. For 10 simulated vehicles, the lane change 
performance index of the basic lane changing model was 
smaller than Webster’s model and for 38 simulated vehicles 
the performance index was similar for both models. 

Webster et al’s lane changing decision model relies 
on a number of simplifying assumptions. To construct the 
forward search tree, the surrounding vehicles are assumed 
not to change their acceleration/deceleration or perform any 
lane changing maneuvers. This assumption is in contrast 
to the real traffic situation in which the decisions of the 
subject vehicle driver affect the decisions of the surround-
ing vehicles’ drivers. The lane changing decisions are also 
restricted to situations where an acceptable gap is available 
in the adjacent lanes. This assumption is only acceptable 
under free flow conditions. To provide acceptable gaps in 
heavy traffic conditions, the subject vehicle driver may force 
the lag vehicle driver in the target lane to slow down or the 
target lag vehicle driver may provide courtesy to the subject 
vehicle and create a gap. Therefore, subject vehicle driver can 
undertake a lane change.

3.2. L ane changing decision models based 
on traffic characteristics

In lane changing decision models in this category, drivers’ 
tactical and operational lane changing decisions are based on 
surrounding traffic characteristics. In a tactical lane changing 
decision, drivers make their lane changing decisions based 
on current and anticipated future characteristics of the sur-
rounding traffic. In an operational lane changing maneuver, 
the driver considers the current traffic situation to execute a 
lane changing maneuver. 

Many studies have related the lane changing decision of 
drivers to surrounding traffic characteristics and they have 
produced models which fall into one of two broad categories: 
rigid mechanistic models and artificial intelligence models. 
Figure 3 highlights that there are a number of alternative 
models in each category. 

Before explaining the different models in detail, it is 
appropriate to begin by explaining some key concepts and 
parameters which are common to all these models. These 
parameters include: positions, speeds and accelerations/
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decelerations of the ‘subject vehicle’ and surrounding vehi-
cles and the space gaps and relative speeds of the surround-
ing vehicles respect to the subject vehicle. Figure 4 shows the 
relationship between the subject vehicle and its surrounding 
vehicles for a case where the right adjacent lane is selected as 
the target lane. 

3.2.1.  Rigid mechanistic models

The rigid mechanistic models are those which create a crisp 
relationship between explanatory variables and dependant 
variable. In these models the magnitude of the result depends 
on the exact values of the independent variables. Mechanistic 
lane changing approaches do not usually incorporate the 
uncertainties associated with drivers’ perceptions and deci-
sions. 

3.2.1.1.	 Stimulus response models
Gipps (1986) proposed a framework for the structure of 
lane changing decisions and the execution of lane changing. 
This framework is useful in explaining lane changing deci-
sions on freeways and also on urban streets where traffic 
signals, obstructions and heavy vehicles influence drivers’ 
decisions. In Gipps’s model, the drivers’ decision to execute 
a lane changing maneuver is the result of considering three 
factors: whether it is physically possible and safe to change 
lanes, whether it is necessary to change lanes and whether 
it is desirable to change lanes. He defined three zones to 
characterize the drivers’ decisions during the lane changing 
maneuver. These three zones are based on the distance to the 
intended exit point. When the exit point is far away, it has 
no effect on drivers’ lane changing decision and the drivers 
try to maintain their desired speed. When the exit point is a 

Figure 4. Spatial separation of the ‘Subject Vehicle’ from other vehicles in the traffic stream.
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middle distance away, the drivers ignore the opportunities 
which have speed advantage but require changing lanes away 
from their desired exit point. When the drivers come close 
to their exit point, they should be in the correct lane or the 
adjacent lane and gaining a speed advantage is unimportant. 
These three zone areas represent a simplified tactical lane 
changing decision in Gipps’s framework.

Gipps’s lane changing decision model was developed 
on the basis of his car following model. The Gipps’s car fol-
lowing model (Gipps 1981) imposes some limitations on 
driver’s braking rate to have a safe speed with respect to the 
preceding vehicle. The driver’s desired speed and the safe 
speed are considered at the same time in order to prevent the 
influence of the slow moving vehicles or obstructions which 
are far from the vehicle. Although Gipps proposed his lane 
changing structure based on his car following model, this 
lane changing structure can be applied using other car fol-
lowing models. The Gipps’s car following model is given by 
the following equation.

vn(t + T) =	 bnT + [bn
2T 2 – bn(2(xn–1(t) – sn–1 – xn(t))	  

	 – vn(t)T – vn–1(t)2/best
n–1]

1/2	 (2)

Where, vn(t + T) is the maximum safe speed for vehicle n 
with respect to the preceding vehicle at time (t + T), bn < 0 is 
the maximum braking rate, T is the time between consecu-
tive calculations of speed and position, xn(t) is the location of 
the front of vehicle n at time t, sn–1 is the effective length of 
vehicle n–1 which is the physical length plus a margin into 
which the subject vehicle is not willing to intrude and best

n–1 is 
the estimate of bn–1 employed by the driver of vehicle n. For 
the purposes of the lane changing model, the maximum safe 
speed in Equation 2 is limited by the driver’s desired speed 
and maximum braking. The driver’s desired speed is used to 
prevent vehicles or obstructions too far ahead from influenc-
ing the driver’s decision. 

Gipps’s lane changing decision model has never been 
validated using microscopic traffic and driver behavior data. 
The lane changing framework has been tested under various 
combinations of traffic conditions and the mistakes which 
had been found during the tests were adjusted. Gipps’s lane 
changing decision model has been applied in several micro-
scopic traffic simulations. Despite, its popularity, it is based 
on some simplifying assumptions. The lane changing occurs 
when a gap of sufficient length is available and it is safe to 
change lanes. However, this assumption may cause some 
limitations in heavy traffic conditions where appropriate 
gaps are rarely available and they are created when the lag 
vehicle drivers provide courtesy or when the subject vehicle 
drivers force the target lag vehicle drivers to reduce speed. 
In addition, the three zones in Gipps’s model are defined 

deterministically based on the distance to the intended exit 
point and the differences between drivers and the differences 
within drivers over time are not considered. 

Wiedemann and Reiter (1992) developed a theoretical 
lane changing decision model to explain the human decision 
process during the lane changing maneuver which is influ-
enced by the driver’s perception of surrounding vehicles. In 
this model, different drivers have different driving character-
istics. These differences are observed in driving capabilities, 
abilities in perception and estimation of the surrounding 
traffic, safety requirements, desired speed and maximum 
acceptable acceleration/deceleration.  

Wiedemann and Reiter assumed that the drivers’ lane 
choice is influenced by their own wishes about driving. 
Based on this assumption, the model distinguishes between 
the lane changes from the slower to the faster lanes and the 
lane changes from the faster to the slower lanes. The desire 
to move into the faster lane can be due to an obstruction 
by a slow moving vehicle in the current lane. The level of 
obstruction is a function of the differences between the front 
vehicle speed and the subject vehicle driver’s desired speed. 
A change to a faster lane is acceptable only when the level 
of obstruction in the current lane is higher than a specific 
threshold or if the speed of the lead vehicle in the target 
lane is considerably higher than the subject vehicle speed. 
The decision to move into the slower lane could be due to 
route choice or to allow a faster vehicle to pass. A change to 
a slower lane is accepted only when the subject vehicle will 
not be obstructed by a slow moving vehicle for a specific 
time interval. The tactical and operational decisions of driv-
ers were considered in Wiedemann’s lane changing decision 
model. Assuming that all drivers’ decisions are based on 
human perceptions, they classified the surrounding influ-
ences as actual influences and potential influences. Actual 
influences are the real characteristics of surrounding vehicles 
which influence the driver’s perceptions and decisions such 
as distances and relative speeds. Potential influences are the 
driver’s estimation of the surrounding vehicles’ situations in 
the near future. 

Wiedemann and Reiter used the macroscopic character-
istics of traffic flows to validate their lane changing decision 
model. They compared the estimated ‘lane occupancy’ for 
each lane as a function of traffic volume and traffic density 
with the corresponding values from a field dataset. They 
reported that their lane changing model resulted in a good 
fit of observed and estimated values of lane occupancy. They 
did not provide any quantitative indication to interpret the 
estimated results. They developed a general lane changing 
decision model for all vehicle types. Therefore, the param-
eters of the general lane changing decision model could be 
calibrated for the heavy vehicle drivers. 
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Hidas (2002; 2005) developed a lane changing deci-
sion model which considers the courtesy of the lag vehicle 
driver in the target lane during the merging or lane changing 
maneuver. Considering the different interaction types among 
the subject vehicle driver and the target lag vehicle driver, 
Hidas defined a three type classification of lane changing 
decisions: free, forced and cooperative lane changes. In 
free lane changes, there is no observable change in the gap 
between the lead and lag vehicles in the target lane during 
the lane changing maneuver. In forced lane changes, the gap 
between the lead and lag vehicles decreases before the start of 
the lane changing and increases after that. Cooperative lane 
changes have a reverse pattern with respect to the forced lane 
changes. 

In addition, Hidas presented his forced lane changing 
algorithm based on the concept of drivers’ courtesy. He 
assumed that a driver who wants to execute lane changing 
maneuver sends a courtesy request to subsequent vehicle 
drivers in the target lane. The request is evaluated by each lag 
vehicle driver in the target lane and depending on several fac-
tors such as position, speed and driver type of the lag vehicle 
it is either refused or accepted. The driver who provides 
courtesy reduces the speed to prepare a sufficient gap for 
the lane changing vehicle. Hidas also considered cooperative 
lane changing as a combination of two decisions: the willing-
ness of the lag vehicle driver in the target lane to slow down 
and the feasibility to slow down. Definition of this three type 
classification of lane changes implies that the drivers’ tacti-
cal lane changing decisions as well as their operational lane 
changing decisions was considered in Hidas’s model.

Hidas assumed that lane changing is feasible if there 
is a gap of sufficient size for the driver in the target lane. 
The driver can move into the target lane without forcing 
the vehicles in the target lane to slow down significantly. 
In addition, lane changing is feasible if the deceleration or 
acceleration required for the subject vehicle to move behind 
the target lead vehicle and the deceleration required for the 
target lag vehicle to allow the subject vehicle to move into 
the target lane is acceptable. According to his lane changing 
model, the subject vehicle can move into the target lane if the 
target lead and lag space gaps are not less than the minimum 
acceptable target lead and lag space gaps at the end of the lane 
changing maneuver. The target lead space gap and the target 
lag space gap in a free lane changing maneuver are calculated 
as follows:

	 gl = g0l – (vs bs /2) + vl	
	 gf = g0f – (vf bf /2) + (vs bs /2)	 (3)

Where, gl and gf are the target lead and lag space gaps respec-
tively, g0l and g0f are the target lead and lag space gaps at the 
start of lane changing, vs, vl and vf are the speeds of the subject 

vehicle and the target lead and lag vehicles respectively and 
bs and bf are the decelerations of the subject vehicle and the 
target lag vehicle.

In a cooperative lane changing maneuver, the target lead 
space gap is calculated by Equation 3. The lag space gap in 
the target lane and the minimum acceptable target lead and 
lag space gaps in a cooperative lane changing maneuver are 
calculated by Equations 4 and 5 respectively.

	 gf = g0f – (vf Dt – bf /2 Dt
2) + vsDt	 (4)

Where, Dt  = Dv /bf is the time of the deceleration period (Dv = 
speed decrease of the subject vehicle).

gl,min=gmin+{cl(vs – vl ) if vs >vl
0 otherwise

  gf,min=gmin+{cf (vf – vs ) if vf >vs
0 otherwise

  (5)

Where, gmin is the minimum safe gap that is independent 
of the speed difference between vehicles (this may be taken as 
equal to the jam gap) and cl and cf are constants.

This condition is used by the lag vehicle driver in the tar-
get lane to decide whether or not to reduce speed and allow 
the subject vehicle to move into the target lane. Meanwhile, 
the subject vehicle driver evaluates the feasibility of perform-
ing a lane changing maneuver. Therefore, the minimum 
acceptable space gaps may be shorter than the desired space 
gaps for the given speeds. The procedure of a forced lane 
changing maneuver is identical to the cooperative lane 
changing maneuver. The only difference is that the subject 
vehicle driver makes assumptions about the maximum speed 
decrease, Dv, and the maximum deceleration, bf, which the 
target lag vehicle driver will use in the given situation. If the 
maneuver is feasible with these assumed values, the subject 
vehicle driver will force the target lag vehicle driver to reduce 
speed and provide gap of sufficient size for lane changing 
execution.

Hidas implemented his lane changing decision model 
in ARTEMiS (Analysis of Road Traffic and Evaluation by 
Micro Simulation) and tested on several simple hypothetical 
road network scenarios to assess the adequacy of his model. 
Then, he examined the effects of his lane changing deci-
sion model on both macroscopic traffic characteristics and 
microscopic traffic characteristics (individual vehicles). He 
estimated the speed-flow relationship on a freeway section by 
his lane changing model and by the ARTEMiS default model 
and compared the results with a typical speed-flow curve 
calculated for the same traffic situation using the Highway 
Capacity Manual (HCM) 1994 method. The results showed 
that up to about 2000 veh/hr flow rate, the estimated speed-
flow relationship by his model was close to the HCM curve. 
The estimated speeds were lower than what is expected from 
the HCM curve at traffic flow rates above 2000 veh/hr. While 
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the average speed under heavy traffic conditions was around 
60 km/hr, with Hidas’s lane changing model, it dropped to 
about 50 km/hr and with ARTEMiS default model it was 
below 40 km/hr. However, Hidas’s lane changing model 
was more accurate than the ARTEMiS default model in 
replicating the HCM curve. Then, he analyzed the estimated 
positions and speed profiles of the subject vehicle and the 
target lead and lag vehicles in the forced and cooperative 
lane changing maneuvers and assessed their consistency with 
theory. He showed that the positions and the speed profiles 
of the subject vehicle and the lead and the lag vehicles are 
consistent with the theory of forced and cooperative lane 
change. 

The general procedure in developing the stimulus 
response lane changing decision models, the considered 
stages in the model developments and the explanatory 
variables which were used in the literature to develop this 
model type are summarized in Table 2. Furthermore, some 
strengths and weaknesses of the stimulus response lane 
changing decision models are briefly presented in this table.

3.2.1.2.  Discrete choice models
Ahmed (1996; 1999) developed a probabilistic model to 
describe lane changing decisions, based on a discrete choice 
framework. He modeled the lane changing decision as a 
sequence of three stages: decision to consider a lane change, 
choice of the target lane and acceptance of a sufficient size 
gap in the target lane to execute the lane changing deci-
sion. He defined three categories of lane changing maneu-
vers: Mandatory Lane Changing (MLC), Discretionary Lane 
Changing (DLC) and forced merging. MLC happens when a 
driver is forced to leave the current lane for instance when 
merging onto the freeway from an on-ramp or taking an 
exit off-ramp. DLC is performed when the driver is not 
satisfied with the driving situation in the current lane and 
wishes to gain some speed advantage for instance when 
the driver is obstructed by a slow moving vehicle (Yang 
and Koutsopoulos 1996). Forced merging occurs in heavily 
congested traffic conditions, when a gap of sufficient size is 
‘created’ by drivers to enable them to execute a lane chang-
ing maneuver. The explanatory variables in Ahmed’s MLC 
model include: the remaining distance to the point at which 
lane changing maneuver must be completed, the number of 
lane changes required to reach the lane connected to the next 
link and the delay (time elapsed since the MLC conditions 
apply). In his DLC model, if the driver is not satisfied with 
driving conditions in the current lane, the adjacent lanes are 
compared to the current lane and the driver selects a target 
lane. The mathematical formulation of the discrete choice 
framework constitutes two different probability functions. 
These two functions are applied to evaluate the probability of 

decision to execute a lane changing maneuver. According to 
Ahmed’s lane changing decision model, the probability that 
driver n performs MLC, DLC or forced merging (FM) at time 
t are given by Equation 6.

Pt(LC | vn) = 1
1 + exp (–Xn

LC(t)βLC – αLCvn)
	 (6)

LC = MLC, DLC, FM

Where, Pt(LC | vn) is the probability of executing MLC, DLC 
or FM for driver n at time t, Xn

LC(t) is the vectors of explana-
tory variables affecting decision to change lanes, βLC is the 
corresponding vector of parameters, vn is the driver specific 
random term and αLC is the parameter of vn.

After decision about changing lanes, the gap of sufficient 
size is accepted to execute the lane changing maneuver. The 
gap acceptance model captures whether the available gaps 
are accepted. In Ahmed’s gap acceptance model, drivers are 
assumed to consider only the adjacent gaps. The available 
gap will be accepted if the target lead and lag gaps are accept-
able. Ahmed defined the critical lead and lag gaps which are 
the minimum acceptable gaps. The available target lead and 
lag gaps will be accepted if they are greater than their critical 
values. The critical lead and lag gaps for driver n at time t is 
presented below.

Gn
cr, gap j(t) = exp(Xn

cr, gap j(t) β gap j + α gap j vn + εn
gap j (t))	 (7)

gap j = lead, lag

Where, Gn
cr, gap j(t) is the critical lead and lag gaps for driver 

n at time t, Xn
cr, gap j(t) is the vector of explanatory variables 

affecting the critical gap j, β gap j is the corresponding vector of 
parameters, vn is the driver specific random term, α gap j is the 
parameter of vn and εn

gap j (t)~N(0, σ 2
εj) is random term.

The probability of accepting a gap in MLC, DLC or FM 
for driver n at time t is given by Equation 8 in which Gn

lead (t) 
and Gn

lag (t) are the available lead and lag gaps in the target 
lane.

Pn( gap acceptance|vn) =		  (8)
Pn(lead gap acceptable|vn) × Pn(lag gap acceptable|vn) =
Pn(Gn

lead (t)> Gn
cr, lead (t)|vn) × Pn(Gn

lag (t)> Gn
cr, lag (t)|vn)

Ahmed used MITSIM (MIcroscopic Traffic SIMulator) 
as a test platform to assess the accuracy of his lane changing 
model. MITSIM is a microscopic traffic simulation labora-
tory developed to evaluate Advanced Traffic Management 
Systems (ATMS) and Advanced Traveller Information 
Systems (ATIS) at the operational level. He implemented 
his model in MITSIM and graphically compared the traf-
fic volumes and average speeds estimated by his model and 
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MITSIM default model with observations in the field data. He 
showed that the performance of the MITSIM improved when 
the lane changing model of the default MITSIM model was 
replaced by his lane changing model. However, there is no 
quantitative measurement to show the better performance of 
MITSIM after implementing Ahmed’s lane changing model. 

Considering the distance to the lane changing point and 
the required number of lane changes, represents a tactical 
as well as an operational lane changing decision in Ahmed’s 
model. His lane changing decision model captures the differ-
ences between drivers’ lane changing decisions in MLC, DLC 
and forced merging. However, this model is unable to cap-
ture the trade-off between MLC and DLC decision process. 
For instance, in his model the drivers are unable to overtake 
while mandatory considerations are active. Similar to Gipps’s 
model, this one assumes that the existence of the MLC situa-
tion is determined based on the distance to the exit off-ramp. 
In addition, the differences between the lane changing deci-
sion of passenger car and heavy vehicle drivers is only consid-
ered by a dummy variable when the subject vehicle is a heavy 
vehicle. The dummy variable only captures the difference in 
the size of the acceptable gap between a passenger car and 
a heavy vehicle. This is a very coarse and simplistic way to 
account for the differences in operational characteristics of 
these two vehicle types. 

Toledo (2003; 2009) developed an integrated probabilis-
tic lane changing decision model which allows drivers to con-
sider both MLC and DLC at the same time. He used a discrete 
choice framework to model drivers’ tactical and operational 
lane changing decisions and developed a probabilistic lane 
changing decision model. The model was calibrated using 
maximum likelihood estimation techniques. In his model, 
the lane changing decision is considered to comprise two 
steps: first, choice of the target lane and second, the gap 
acceptance decision. Toledo used a four group classification 
of the explanatory variables underlying lane changing deci-
sions: neighborhood variables (e.g. gaps, speeds), path plan 
variables (e.g. distance from the intended exit off-ramp), 
network knowledge and experience (e.g. avoiding the nearest 
lane to the shoulder) and driving style and driving capabili-
ties. Similar to Ahmed’s model, he defined a dummy variable 
to capture the differences between the lane changing decision 
of passenger car and heavy vehicle drivers. The heavy vehicle 
dummy variable captures the limitations in heavy vehicles’ 
speed.

In Toledo’s target lane choice model, the driver may 
choose to stay in the current lane or to move into either the 
right or the left adjacent lanes. The general form of the model 
for target lane choice is presented by Equation 9.

Un
lane i(t) = Xn

lane i(t) βlane i + αlane ivn + εn
lane i(t)	 ( 9 )

lane i = CL, RL, LL

Where, Un
lane i(t) is the utility of lane i to driver n at time 

t, Xn
lane i(t) is the vector of explanatory variables affecting the 

utilities of lane i, βlane i  is the corresponding vector of param-
eters, εn

lane i(t) is the random term associated with the lane 
utility, vn is the driver specific random term.

The probability of selecting a specific lane for each driver 
is calculated by a logit model (Equation 10).

Pn (lane it | vn) =  
exp [Xn

lane i(t)lane i + lane i vn]

Σ
j∈I

exp [Xn
lane i(t)lane j + lane h vn]

	 (10)

lane i, lane j I = {CL, RL, LL}

Based on the target lane choice, the gap acceptance 
model captures the decision on selecting the target gap. The 
model assumes that if the adjacent gap in the target lane is 
acceptable, the driver will move into the target lane and does 
not consider any other gaps. In his model, the adjacent gap 
comprises two parts: the target lead gap and the target lag 
gap. The available target lead and lag gaps are compared to 
driver’s corresponding critical gaps, which are the minimum 
acceptable gaps. The available target lead and lag gaps will be 
accepted if they are greater than the critical target lead and 
lag gaps. The general form of Toledo’s critical gap model is 
presented by Equation 11. To ensure that the critical gaps 
are always positive, they are assumed to follow a lognormal 
distribution.

In (Gn
gap j, TL, cr(t)) = Xn

gap j, TL(t) β gap j + α gap jvn + εn
gap j(t)	 (11)

gap j = lead, lag

Where, Gn
gap j, TL, cr(t) is the critical gap g in the target lane 

measured in meters, Xn
gap j, TL(t) is the vector of explanatory 

variables affecting the critical gap j, β gap j is the  correspond-
ing vector of parameters, εn

gap j(t) ~ N(0, σ 2
gap j) is the random 

term and α gap j is the parameter of the driver specific random 
term vn.

The probability of accepting the gap and executing a lane 
changing maneuver for each driver is given by the following 
equation (Equation 12). In this equation, Gn

lead, TL(t) and Gn
lag, 

TL(t) are the available lead and lag gaps in the target lane.

Pn(change to the target lane | TLt,vn) =	 (12)
Pn(accept lead gap | TLt,vn) × Pn (accept lag gap | TLt,vn) =	
Pn(Gn

lead,TL(t)>Gn
lead,TL,cr(t) |TLt,vn) × Pn(Gn

lag,TL(t)>Gn
lag,TL,cr(t) | TLt,vn)

TL = RL,LL

In Toledo’s model, after selecting the target lane and 
finding a gap of sufficient size, the drivers perform a sequence 
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of accelerations and decelerations in order to move into the 
target gap. In addition, a three stage model of acceleration 
behavior is used for the subject vehicle to select the target 
gap. First, an acceleration model is applied for the time that 
the subject vehicle driver wishes to stay in the current lane. 
Second, an acceleration model is applied when the subject 
vehicle executes a lane changing maneuver into a gap which 
is alongside the subject vehicle. Third, an acceleration model 
which is used when the subject vehicle accelerates or deceler-
ates to move into the target gap which is not directly along-
side the subject vehicle. 

Like Ahmed (1999), Toledo implemented his integrated 
lane changing model in MITSIM and compared the esti-
mated measurements with results of using separate MLC and 
DLC models in MITSIM and observations in the field data. 
To evaluate the accuracy of his lane changing model, travel 
times and the distribution of vehicles across lanes as well as 
the traffic volume and average speed at each 5 minutes time 
interval were estimated by his integrated model and MITSIM 
separate MLC and DLC models. Then, these results were 
compared to each other and to the corresponding values 
from the field data. The results showed that the difference 
between the observed and estimated travel times for Toledo’s 
model and separate MLC and DLC models are 3.2% and 
9.5% respectively. Both models had similar performance 
in replicating observed traffic volumes and the observed 
distribution of vehicles across lanes. Furthermore, the differ-
ence between the observed speed and the estimated speed by 
Toledo’s model was -2.9%. This value was -5.6% for separate 
MLC and DLC models. 

The general procedure to develop a probabilistic lane 
changing decision model, the considered stages in the model 
developments, the explanatory variables and the strengths 
and weaknesses of this model type are summarized in Table 
2. 

3.2.1.3.  Psychological models
The French National Institute for Research in Transportation 
and Safety (INRETS) developed a driving decision model 
called ARCHISIM. This model has been developed to use 
in either a driving simulator or as part of an ordinary traffic 
simulation model (Espié et al. 1994; Champion et al. 2001; 
Champion et al. 2002; El Hadouaj et al. 2000). In psycho-
logical driving decision models, drivers try to minimize their 
interaction with the surrounding traffic. In ARCHISIM, the 
decisions of subject vehicle drivers are based on trying to 
minimize the interaction with their environment including 
other drivers and road characteristics. Within ARCHISIM, 
drivers are simulated in virtual vehicles and they have indi-
vidual models of their environment and they interact with 
other vehicles (e.g. passenger cars, trucks and trams), the 

infrastructure (e.g. traffic lights) and the road. Each driver 
has specific skills, aims and characteristics. The English 
publication on ARCHISIM presents only a general overview 
of the model and do not present the details of the model for-
mulation or validation results. Consequently, it is impossible 
to comment in detail about the structure of the model or to 
assess its performance. 

3.2.2.  Artificial Intelligence models (AI)

Rigid mechanistic models do not incorporate the inconsis-
tencies and uncertainties of drivers’ perception and decisions 
(McDonald et al. 1997). These models are based on crisp 
variable magnitudes (Das and Bowles 1999). Most of the 
traditional lane changing decision models use crisp math-
ematical equations and conventional logic rules to represent 
drivers’ knowledge of the surrounding traffic and to model 
the drivers’ lane changing decisions. Commonly, random 
terms are included in these models which capture the varia-
tion of the explanatory variables around the mean value of 
those variables. The random terms are mainly Gumbel or 
normally distributed (Ahmed 1999; Choudhury et al. 2007; 
Toledo 2009). 

However, drivers make their decisions based on their 
imprecise perceptions of the surrounding traffic. In recent 
years, Artificial Intelligence (AI) based approaches have 
become popular because they overcome the shortcoming of 
rigid mechanistic models. One type of artificial intelligence 
is fuzzy logic models which allow defining uncertainty in the 
model and therefore, reflect the natural or subjective percep-
tion of real variables (Ma 2004). 

Das et al. (1999) proposed a new microscopic simulation 
methodology based on fuzzy IF-THEN rules and called the 
software package as Autonomous Agent SIMulation Package 
(AASIM). The major motivation of using a fuzzy knowledge 
based approach to model drivers’ decisions is that fuzzy 
models provide an effective means to change highly non-
linear systems into IF-THEN rules. In addition, fuzzy logic 
is well equipped to handle uncertainties in real world traf-
fic situations. They classified the lane changing maneuvers 
as MLC and DLC. To decide when a MLC happens in the 
microscopic traffic simulation package, the MLC fuzzy rules 
consider the distance to the approaching exit or merge point 
and the number of lane changes which are required. When 
multiple lane changes are required, the probability of mak-
ing a decision to change lanes increases. The DLC rules of 
AASIM reflect a binary decision (change lanes or not) which 
is based upon two explanatory variables. These two explana-
tory variables are the driver’s speed satisfaction level, which 
is based on the drivers’ recent speed history, and the level of 
congestion in the left or right adjacent lanes. In AASIM, no 
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specific lane changing decision model was considered for 
each vehicle type. 

The formulation of driver’s speed satisfaction level and 
congestion level in the left or right adjacent lanes are pre-
sented as Equations 13 and 14 respectively. The MLC and 
the DLC frameworks in AASIM are based on the tactical and 
operational lane changing decisions of drivers.

	 σt = (1 – ε) × σt–1 + ε × ( v
vlim

)	 (13)

Where, σ is the driver satisfaction, v is the vehicle speed 
during the current iteration, vlim is the speed limit of freeway 
and ε is learning satisfaction rate. 

The driver satisfaction represents the drivers’ recent 
speed history which is updated at each time step. The learn-
ing satisfaction rate remains close to unity when the vehicle 
speed is maintained close to the speed limit and it reduces at 
lower speeds.

	 c = 
Σ e–di/Δ ×(1 – 

v
vlim

)
all i

Σ e–di/Δ

all i

	 (14)

Where, c is the local lane congestion as seen from a 
driver’s view point, di is the distance to the ith vehicle and Δ 
is parameter.

The summation in Equation 14 is carried out for all 
vehicles ahead of a vehicle. In this equation, the quantity  
(e–di /Δ) is a weight associated with the ith vehicle which 
decreases exponentially with distance.

In AASIM, once the driver decides to execute a lane 
changing maneuver, the next step is to find a suitable gap. 
The fuzzy rules are based on the adjacent gaps and surround-
ing vehicles’ speeds in the target lane. Then, an acceleration 
value is calculated which is different from that generated by 
normal car following rules. If there is an acceptable size of 
gap in the target lane, the gap finding rules enable the vehicle 
to speed up or slow down to move closer to the gap. At the 
same time, the gap finding rules consider the safe headway to 
the front vehicle in the current lane. The last stage in AASIM 
lane changing decision model is setting the gap acceptance 
rules. These rules look for the gaps and speeds of the lead and 
lag vehicles in the target lane and the distance to the next exit 
or lane merge (infinite for DLC). The general form of a fuzzy 
rule which is used in their research is presented below.

jth rule: If I1 is A1j and ... Ii is Aij and Im is Amj then O is Bj	 (15)

Where, I = f (I1, I1, ..., In) are the input variables, Aij are the 
fuzzy subsets for input Ij, O is the output and Bj is the fuzzy 
subsets for output O.

They evaluated the accuracy of AASIM using actual field 
data. The simulation results were compared with the results 
from a commercial microscopic traffic simulation package 
called CORSIM (CORridor SIMulation). The traffic volume 
and the average speed of the weaving section were estimated 
for 60 minutes with AASIM and CORSIM. Then, the esti-
mated results were compared to each other and to the field 
data observations. The results showed the average speeds 
of the simulated vehicles by AASIM differed from the field 
observations by less than 4.8 km/hr for each 15 minute time 
interval. In contrast, the speed differences from CORSIM 
model were around 16.0 km/hr. 

McDonald et al. (1997) Brackstone et al. (1998) and 
Wu et al. (2000; 2003) developed a fuzzy logic motorway 
simulation model (FLOWSIM) and established fuzzy sets 
and systems for the model. To model the drivers’ tactical 
and operational lane changing decision, they classified lane 
changing maneuvers into two categories: lane changes to the 
slower lane and lane changes to the faster lane. Lane changes 
to the slower are mainly executed to prevent disturbing fast 
moving vehicles which approach from the rear. Lane changes 
to the faster lane are mainly executed with the aim of gaining 
speed advantages. Their lane changing decision model to the 
slower lane uses two variables: pressure from the rear and gap 
satisfaction in the slower lane. The pressure from the rear is 
the time headway of the rear vehicle and gap satisfaction is 
the period of time during which it will be possible for the 
subject vehicle driver to stay in the gap in the slower lane, 
without reducing speed. The fuzzy sets which are used to 
develop their lane changing decision model to the slower lane 
are presented in Table 1. 

A typical fuzzy rule in the lane changing decision model 
to the slower lane is given by Equation 16.

	 If pressure from rear is Low and gap satisfacion	  
	 is High then intention of moving into right lane 	 (16)
	 is Medium	

To establish the lane changing decision model to the 
faster lane, they defined two variables: overtaking benefit and 
opportunity. The overtaking benefit is the speed gained when 
a lane changing maneuver to the faster lane is executed. The 

Table 1: Fuzzy sets for lane changing decision model to 
the slower lane.

Pressure From Rear Gap Satisfaction
Intension of Moving 

into Right Lane

High Good High

Medium Moderate Medium

Low Bad Low
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opportunity reflects the safety and comfort of the lane chang-
ing maneuver, which is measured by the time headway to the 
first lag vehicle in the faster lane. The lane changing decision 
framework which is used in FLOWSIM is a general lane 
changing decision framework and could be applied for all 
types of vehicles. To assess the accuracy of FLOWSIM in esti-
mating the lane changing maneuvers, the empirical 5 minutes 
traffic flow counts were used as the simulation inputs. They 
estimated the number of lane changing maneuvers and the 

percentage of lane occupancy for each lane at different traffic 
flow rates. The estimated results were then compared to the 
observations in the field data at two steps. First, they used the 
mean value of the measurements to compare the observed 
and the estimated measurements. They found the difference 
between the mean values of the observed and estimated lane 
changing rates and lane occupancy at different traffic flow 
rates.

Table 2: Alternative lane changing decision models based on traffic flow characteristics.

Model Types

Stimulus Response Probabilistic Fuzzy Logic

General Procedure for Model Development

•	 Decide on explanatory variables.

•	 Calibrate the models (Gipps 1986; 
Wiedemann and Reiter 1992).

•	 Decide on:

1.	Independent stages.

2.	Explanatory variables.

3.	Probability functions.

•	 Calibrate the probabilistic functions (Ahmed 
1999; Choudhury et al. 2007; Toledo 2009).

•	 Decide on: 

1.	Explanatory variables.

2.	Fuzzy sets and membership function.

3.	Rule sets.

•	 Calibrate the models (McDonald et al. 1997; 
Brackstone et al. 1998; Das et al. 1999; Wu 
et al. 2000; Wu et al. 2003).

Stages in Model Development and Explanatory Variables (EV)

•	 Decide on MLC or DLC (Gipps 1986).

	 EV: Maximum subject vehicle’s safe speed 
and brake, front gap, subject vehicle 
driver’s estimation of front vehicle driver’s 
brake. 

•	 Decide on lane change to either faster or 
slower lane (Wiedemann and Reiter 1992).

	 EV: Lane change duration, time and dis-
tance headways to surrounding vehicles.

•	 Decide on changing lanes.

	 EV: MLC-Exit/merge distance, number 
of lane changes, DLC-Presence of heavy 
vehicle, front relative speed and decelera-
tion (Ahmed 1999). 

•	 Select the target lane.

	 EV: Subject vehicle speed, target lead and 
lag gaps and relative speeds, presence of 
heavy vehicle, tailgating, avoiding the right-
most-lane, distance to the exit off-ramp 
(Ahmed 1999;  Toledo 2009).

•	 Accept a gap.

	 EV: Target lead and lag relative speeds, dis-
tance between target lead and lag (Ahmed 
1999;  Toledo 2009).

•	 Decide on MLC or DLC (Das et al. 1999).

MLC or DLC

	 EV: MLC-Exit/merge distance, number of 
lane changes, DLC-Left and right lane den-
sity, drivers’ satisfaction.

Find a gap in target lane.

	 EV: Front, lead and lag gaps and relative 
speeds.

Accept sufficient size gap.

	 EV: Target lead and lag speeds and gaps, 
exit/merge distance.

•	 Change lanes to left or right (McDonald et 
al. 1997; Brackstone et al. 1998; Wu et al. 
2000; Wu et al. 2003).

	 EV: Left-Motivation, opportunity, Right-
Pressure, Gap satisfaction.

Strengths

•	 Simplicity in modeling the lane changing 
maneuver.

•	 Considering the whole lane change decision 
process in one simple stage.

•	 Small number of variables.

•	 Decide on the basis of maximum gained 
utility. 

•	 Probabilistic results instead of binary 
answers (yes/no).

•	 Considering human’s imprecise perception.

•	 Calibrating the model with an optimization 
algorithm.

•	 Finding the fuzzy rules from numerical data.

Weaknesses

•	 Difficulties in calibrating the model param-
eters.

•	 Using primary variables and simple frame-
work to model the lane changing decision.

•	 Obligation to calculate all probability func-
tions to find the utility of each choice.

•	 Validation process of the membership func-
tions.

•	 Difficulties and complexity in abstracting 
fuzzy rules.
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racy of lane changing models which subsequently 
could improve the accuracy of the obtained results 
from microscopic traffic simulations. 

•	 The common approach in assessing the accuracy 
of the current lane changing models is to analyze 
the macroscopic traffic measurements estimated 
by the model and compare them to the observed 
values from field data. Evaluating the macroscopic 
traffic measurements is insufficient to test the per-
formance of the lane changing models. To examine 
the accuracy of the lane changing models in fur-
ther detail, the estimated lane changing maneuvers 
should microscopically be analyzed and compared 
to the observed lane changes in the field data. To 
microscopically analyze the estimated lane changing 
maneuvers, the speeds of the subject vehicle and the 
surrounding vehicles (Figure 4) and the space gaps 
of the surrounding vehicles respect to the subject 
vehicle should be compared to corresponding values 
in the observed lane changing maneuvers.

5. C onclusions and future 
directions

Lane changing maneuvers have a significant impact on 
macroscopic and microscopic characteristics of traffic 
flows due to their interfering effect on surrounding traffic. 
Understanding the explanatory variables which affect driv-
ers’ lane changing behavior is important since lane changing 
models are imbedded in the microscopic traffic simulation 
software which now has application in variety of traffic and 
transportation studies. Studies have investigated the drivers’ 
lane changing behavior based on a range of approaches. This 
paper provided a review on the existing lane changing mod-
els and described their strengths and weaknesses. The lane 
changing models were classified in this paper according to 
their characteristics. 

In exploring the range of lane changing models, a two 
type classification of lane changing decision models was 
defined: lane changing decision models based on a search 
algorithm and lane changing decision models based on traffic 
characteristics. In the lane changing decision models which 
are based on a search algorithm, drivers’ operational lane 
changing decision is modeled based on the surrounding traf-
fic characteristics and drivers’ tactical lane changing decision 
is estimated according to the search algorithms. The search 
algorithms are used to estimate the near future position of 
vehicles as well as estimating the drivers’ lane changing deci-
sion. In the lane changing decision models based on traffic 
characteristics, drivers’ tactical and operational lane chang-

The results showed that the differences between the 
observed and estimated measurements are in the range of 
0-11%. To further analyze the results, they statistically tested 
and compared the distribution of the observed and estimated 
measurements showing that the overall distribution of the 
estimated and observed measurements also matches well. 

The procedure to develop the fuzzy logic lane changing 
decision models, the explanatory variables and the strengths 
and the weaknesses of fuzzy logic lane changing decision 
models are summarized in Table 2.

4. Limi tations of the existing lane 
changing models

From the foregoing review of the literature, the major limita-
tions of the existing lane changing models become appar-
ent. The literature review has highlighted a number of areas 
where further research could overcome gaps in existing 
knowledge which are presented below:

•	 The number of heavy vehicles on roadways of 
United States of America, has increased by 75% 
over the past three decades and this trend is likely 
to continue at least over the next decade (Bureau 
of Transportation Statistics 2002). Typically, the 
proportion of heavy vehicles ranges from as low as 
2% to as high as 25% of total traffic during the day 
(Al-Kaisy et al. 2002). In Australia, the proportion of 
heavy vehicles could increase to 30% of total vehicles 
in the morning peak and 20% in the afternoon peak 
on some freeways (Conway 2005). However, little 
attention has been paid to a specific lane changing 
model for heavy vehicles. The current lane chang-
ing models are principally associated with passenger 
cars and do not explore or attempt to capture the dif-
ferences which exist between the passenger car and 
heavy vehicle lane changing patterns. The current 
lane changing models mainly deal with calibrating 
the parameters of a general lane changing model for 
the heavy vehicles rather than considering a specific 
lane changing model for the heavy vehicle drivers 
(Moridpour et al. 2009; 2010). 

•	 Several seconds are required for drivers to complete 
a lane changing maneuver. However, the existing 
lane changing models mainly focus on drivers’ lane 
changing decision and generally neglect execution 
of the lane changing maneuver. Excluding the lane 
changing execution, may have a significant impact 
on estimated traffic flow characteristics. Considering 
the lane changing execution may improve the accu-
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ing decisions are estimated according to characteristics of the 
surrounding traffic. 

The lane changing decision models based on traffic char-
acteristics fall into one of two broad categories: rigid mecha-
nistic models and AI based models. The rigid mechanistic 
models create a crisp relationship between the explanatory 
variables and the dependent variables. These models do not 
usually incorporate the uncertainties associated with drivers’ 
perceptions and decisions. The fuzzy logic models which 
are one type of AI models provide the opportunity to define 
uncertainty in the model and therefore, reflect the natural 
perception of explanatory variables.

The 3 key limitations of the existing lane changing deci-
sion models were identified. First, no specific lane changing 
model has been developed for the heavy vehicle drivers. The 
current lane changing models mainly deal with calibrating 
the parameters of a general lane changing model for the 
heavy vehicle drivers. Second, the existing lane changing 
models mainly focus on drivers’ lane changing decision 
and generally neglect the lane changing execution. Finally, 
macroscopic traffic measurements are used to examine the 
accuracy of the current lane changing models. Further analy-
sis is required to examine the performance of lane changing 
models in replicating the observed lane changing maneuvers 
microscopically.

Future research should focus on advancing microscopic 
traffic flow modeling by providing an enhanced capabil-
ity for modeling the lane changing of drivers. Such a lane 
changing model would require capturing specifications of 
the heavy vehicle drivers’ lane changing decision in addition 
to the physical characteristics of heavy vehicles (e.g. length, 
size) and their operational characteristics (e.g. acceleration, 
deceleration and maneuverability). Acceleration/decelera-
tion models should be developed for different vehicle types 
during lane changing execution. These models will estimate 
the acceleration and deceleration behavior of drivers while 
changing lanes. To increase freeway capacity and improve 
traffic safety, different lane restriction strategies may be con-
sidered for heavy vehicles and passenger cars. Microscopic 
traffic simulation packages could be used to assess the effects 
of different heavy vehicle and passenger car lane restriction 
strategies. A lane changing decision model for heavy vehicle 
drivers as well as lane changing execution models for heavy 
vehicle and passenger cars drivers will increase the accu-
racy of microscopic traffic simulation packages in estimat-
ing heavy vehicle and passenger car drivers’ lane changing 
behavior and enhance the performance of microscopic traffic 
simulation packages.

To develop new lane changing models and improve the 
accuracy of the current lane changing models, large trajec-
tory datasets are required. Collection and compilation of a 

large trajectory dataset for model development is costly and 
time consuming. However, it would be desirable for model 
development to be based on a large sample data. A large tra-
jectory dataset would enable future research to model drivers’ 
behavior under different traffic conditions. Furthermore, the 
differences between drivers as well as the differences in the 
behavior of individual drivers over time would be captured.
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