Machine Learning

-Linear Regression-

SCH Univ.
Dept. of AI and Bigdata
Kim JinSeong

Contents

1. Chapter I

- Definition of Linear Regression

2. Chapter Π

- Parameter Estimation

3. Chapter III

- Parameter Inference

4. Chapter IV

- Coefficient of Determination
- ANOVA

Chapter I

-Definition of Linear Regression-

Types of Machine Learning

Types of Regression Model

Types of Regression Model

Definition of Linear Regression Model

Linear Regression Model: Model that expresses Y(output variable) as a linear combination of X(input variable)

* Linear combination : Combine variables by adding/subtracting (constant multiplication)
ex) $Y=B_{0}+B_{1} X_{1}+B_{2} X_{2}+\cdots+B_{p} X_{p}$

Purpose 1. Explain the relationship between X variables and Y variables
2. Predict future Y (output variables)

Definition of Linear Regression Model

$$
\begin{array}{r}
Y=\frac{\text { can be explained by } X(f(x))}{}+\frac{\text { can't be explained by } X(\varepsilon)}{\varepsilon=\text { random error }}
\end{array}
$$

Assumption of Linear Regression Model

- Assumption of random error
$\Rightarrow \varepsilon_{\mathrm{i}} \sim \mathrm{N}\left(0, \sigma^{2}\right) \quad \mathrm{i}=1,2,3, \ldots, \mathrm{n}$
ε_{i} conforms to a normal distribution $\rightarrow \mathrm{E}\left(\varepsilon_{\mathrm{i}}\right)=0, \mathrm{~V}\left(\varepsilon_{\mathrm{i}}\right)=\sigma^{2}$ for all i

In $\mathrm{Y}=B_{0}+B_{1} \mathrm{X}+\varepsilon, \varepsilon$ Follows probability distribution(normal distribution) So, Y also follows any probability distribution

$$
\begin{array}{ll}
\text { 1. } \mathrm{E}\left(Y_{\mathrm{i}}\right)=\mathrm{E}\left(B_{0}+B_{1} \mathrm{X}_{\mathrm{i}}\right)+\mathrm{E}(\varepsilon)=B_{0}+B_{1} \mathrm{X}_{\mathrm{i}} & \text { 2. } \mathrm{V}\left(Y_{\mathrm{i}}\right)=\mathrm{V}\left(B_{0}+B_{1} \mathrm{X}_{\mathrm{i}}\right)+\mathrm{V}(\varepsilon)=\sigma^{2} \\
& \text { B } B_{0}+B_{1} \mathrm{X}_{\mathrm{i}} \text { is constant } \rightarrow \mathrm{E}\left(B_{0}+B_{1} \mathrm{X}_{\mathrm{i}}\right)=B_{0}+B_{1} \mathrm{X}_{\mathrm{i}} \\
\mathrm{E}\left(\varepsilon_{\mathrm{i}}\right)=0 & {\left[\begin{array}{l}
B_{0}+B_{1} \mathrm{X}_{\mathrm{i}} \text { is constant } \rightarrow \mathrm{V}\left(B_{0}+B_{1} \mathrm{X}_{\mathrm{i}}\right)=0 \\
\mathrm{~V}\left(\varepsilon_{\mathrm{i}}\right)=\sigma^{2}
\end{array}\right.}
\end{array}
$$

$$
\text { i.e., } Y_{i} \sim N\left(B_{0}+B_{1} X_{i}, \sigma^{2}\right) i=1,2, \cdots, n
$$

Assumption of Linear Regression Model

$$
\text { i.e., } Y_{i} \sim N\left(B_{0}+B_{1} X_{i}, \sigma^{2}\right) i=1,2, \cdots, n
$$

Linear Regression Model

View Point.

Find a linear regression line that describes the relationship
between the input variable (X) and the mean of output variable (Y)
i.e., Find Parameter $\left(B_{0}, B_{1}, \ldots, B_{p}\right)$ using the function of data

Linear Regression Model

View Point.
Find a linear regression line that describes the relationship between the input variable (X) and the mean of output variable (Y)

Linear Regression Model

Linear Regression Model

Linear Regression Model

Find Best Parameter $\left(B_{0}, B_{1}, ., B_{p}\right)$ using data

Linear Regression Model

Find Best Parameter $\left(B_{0}, B_{1}, \ldots, B_{p}\right)$ using data
How to find good parameter?

Chapter Π

- Parameter Estimation -

Parameter Estimation

Question. Let's compare with red and blue. Which one is correct prediction line?

Parameter Estimation

Question. Let's compare with red and blue. Which one is correct prediction line?

Parameter Estimation

Question. Let's compare with red and blue. Which one is correct prediction line?

Answer. Red is a better regression line than blue

Parameter Estimation

$$
\begin{aligned}
& \mathrm{d}_{1}+\mathrm{d}_{2}+\cdots+\mathrm{d}_{\mathrm{n}}=0 \\
& d_{1}^{2}+d_{2}^{2}+\cdots+d_{\mathrm{n}}^{2} \geq 0 \\
& \mathrm{~d}_{1}=\mathrm{Y}_{1}-E\left(\mathrm{Y}_{1}\right) \\
& =\mathrm{Y}_{1}-\left(\mathrm{B}_{0}+\mathrm{B}_{1} \mathrm{X}_{1}\right) \\
& \sum_{i=1}^{n} d_{\mathrm{i}}^{2}=\sum_{i=1}^{n}\left\{\mathrm{Y}_{\mathrm{i}}-\left(\mathrm{B}_{0}+\mathrm{B}_{1} \mathrm{X}_{\mathrm{i}}\right)\right\}^{2} \longleftarrow \text { Cost Function }
\end{aligned}
$$

i.e., Finding the smallest Cost function is finding the best parameters !!!

$$
\min _{\mathrm{B}_{0}, \mathrm{~B}_{1}} \sum_{i=1}^{n}\left\{\mathrm{Y}_{\mathrm{i}}-\left(\mathrm{B}_{0}+\mathrm{B}_{1} \mathrm{X}_{\mathrm{i}}\right)\right\}^{2}
$$

Parameter Estimation

$$
\begin{aligned}
& \mathrm{d}_{1}+\mathrm{d}_{2}+\cdots+\mathrm{d}_{\mathrm{n}}=0 \\
& d_{1}^{2}+d_{2}^{2}+\cdots+d_{\mathrm{n}}^{2} \geq 0 \\
& \mathrm{~d}_{1}=\mathrm{Y}_{1}-E\left(\mathrm{Y}_{1}\right) \\
& =Y_{1}-\left(B_{0}+B_{1} X_{1}\right) \\
& \sum_{i=1}^{n} d_{\mathrm{i}}^{2}=\sum_{i=1}^{n}\left\{\mathrm{Y}_{\mathrm{i}}-\left(\mathrm{B}_{0}+\mathrm{B}_{1} \mathrm{X}_{\mathrm{i}}\right)\right\}^{2} \longleftarrow \text { Cost Function }
\end{aligned}
$$

i.e., Finding the smallest Cost function is finding the best parameters !!!

$$
\min _{\mathrm{B}_{0}, \mathrm{~B}_{1}} \sum_{i=1}^{n}\left\{\mathrm{Y}_{\mathrm{i}}-\left(\mathrm{B}_{0}+\mathrm{B}_{1} \mathrm{X}_{\mathrm{i}}\right)\right\}^{2}
$$

Parameter Estimation

In linear regression, Cost Function is always convex = globally optional solution exists

Convex Function

Local Optimal Solution
i.e., The way that finds the smallest cost function(estimates best parameter) is

Parameter Estimation

- Partial derivative based on Parameter $\left(\mathrm{B}_{1}, \mathrm{~B}_{0}\right)$
(B_{1} : gradient, , $\mathrm{B}_{0}: \mathrm{y}$-intercept)
Cost Function: $\quad \sum_{i=1}^{n}\left\{\mathrm{Y}_{\mathrm{i}}-\left(\mathrm{B}_{0}+\mathrm{B}_{1} \mathrm{X}_{\mathrm{i}}\right)\right\}^{2}$
$\left[\begin{array}{ll}\mathrm{B}_{0} \text { partial derivative } & \rightarrow \frac{\partial \mathrm{C}\left(\mathrm{B}_{0}, \mathrm{~B}_{1}\right)}{\partial \mathrm{B}_{0}}=-2 \sum_{i=1}^{\mathrm{n}} \mathrm{Y}_{\mathrm{i}}-\left(\mathrm{B}_{0}+\mathrm{B}_{1} \mathrm{X}_{\mathrm{i}}\right)=0 \\ \mathrm{~B}_{1} \text { partial derivative } & \rightarrow \frac{\partial \mathrm{C}\left(\mathrm{B}_{0}, \mathrm{~B}_{1}\right)}{\partial \mathrm{B}_{1}}=-2 \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{Y}_{\mathrm{i}}-\left(\mathrm{B}_{0}+\mathrm{B}_{1} \mathrm{X}_{\mathrm{i}}\right) \mathrm{X}_{\mathrm{i}}=0\end{array}\right.$

The result of partial derivative

$$
\left[\begin{array}{l}
\hat{B}_{0}=\bar{Y}-\widehat{B}_{0} \bar{X} \\
\hat{B}_{1}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)\left(\mathrm{Y}_{\mathrm{i}}-\overline{\mathrm{Y}}\right)}{\sum_{\mathrm{i}=1}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}
\end{array}\right.
$$

The linear regression function that has best parameter

$$
f(x)=\widehat{Y}=\widehat{B}_{0}+\widehat{B}_{1} X
$$

Least Squares Estimation Algorithm

Goal. Find estimator of B_{0} and B_{1} (i.e., \hat{B}_{0} and \widehat{B}_{1})
Step1. Cost Function(Squared the sum of the difference between the actual y value and y value on the regression line)

$$
\sum_{i=1}^{n}\left\{\mathrm{Y}_{\mathrm{i}}-\left(\mathrm{B}_{0}+\mathrm{B}_{1} \mathrm{X}_{\mathrm{i}}\right)\right\}^{2}
$$

Step2. Find $\mathrm{B}_{0}, \mathrm{~B}_{1}$ to minimize Cost Function

$$
\min _{\mathrm{B}_{0}, \mathrm{~B}_{1}} \sum_{i=1}^{n}\left\{\mathrm{Y}_{\mathrm{i}}-\left(\mathrm{B}_{0}+\mathrm{B}_{1} \mathrm{X}_{\mathrm{i}}\right)\right\}^{2}
$$

Step3. Find the point where the derivative(gradient) is 0

$$
\begin{gathered}
\frac{\partial \mathrm{C}\left(\mathrm{~B}_{0}, \mathrm{~B}_{1}\right)}{\partial \mathrm{B}_{0}}=-2 \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{Y}_{\mathrm{i}}-\left(\mathrm{B}_{0}+\mathrm{B}_{1} \mathrm{X}_{\mathrm{i}}\right)=0 \\
\frac{\partial \mathrm{C}\left(\mathrm{~B}_{0}, \mathrm{~B}_{1}\right)}{\partial \mathrm{B}_{1}}=-2 \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{Y}_{\mathrm{i}}-\left(\mathrm{B}_{0}+\mathrm{B}_{1} \mathrm{X}_{\mathrm{i}}\right) \mathrm{X}_{\mathrm{i}}=0
\end{gathered}
$$

Solutions. $\hat{B}_{0}=\bar{Y}-\hat{B}_{1} \bar{X}, \hat{B}_{1}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)\left(\mathrm{Y}_{\mathrm{i}}-\overline{\mathrm{Y}}\right)}{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}$

Residual

$\left[\begin{array}{l}B_{0}, B_{1} \text { is not fixed value, just status of parameter } \\ \varepsilon\end{array}\right.$ ε follows normal distribution

[$\hat{B}_{0}, \widehat{B}_{1}$ is fixed value
e is error of fixed values (constant)

$$
\mathrm{e}(\text { residual })=\text { the value that } \varepsilon \text { (random error }) \text { is actually implemented }
$$

Chapter III

- Parameter Inference -

Parameter inference

- There are two ways of infer parameters

1. Estimator
2. Hypothesis test

Estimator of parameter

- Estimators $\left(\widehat{B}_{0}, \widehat{B}_{1}\right)$ that calculated by using Least Squared Estimation Algorithm

$$
\hat{B}_{0}=\bar{Y}-\hat{B}_{1} \bar{X}, \quad \hat{B}_{1}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)\left(\mathrm{Y}_{\mathrm{i}}-\overline{\mathrm{Y}}\right)}{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}
$$

- Estimator: a function of the sample(data)
$\widehat{B}_{0}, \widehat{B}_{1}$
- Usage of Estimator: estimate unknown parameter $\left(\mathrm{B}_{0}, \mathrm{~B}_{1}\right)$
- Types of Estimator - Point Estimator
- Interval Estimator

Point estimator of parameter

$$
Y_{\mathrm{i}}=B_{0}+B_{1} \mathrm{X}_{\mathrm{i}}+\varepsilon_{\mathrm{i}} \quad \varepsilon_{\mathrm{i}} \sim \mathrm{~N}\left(0, \sigma^{2}\right) \mathrm{i}=1,2, \cdots, \mathrm{n}
$$

1) Point Estimator of $B_{0}: \hat{B}_{0}=\bar{Y}-\widehat{B}_{1} \bar{X}$
2) Point Estimator of $B_{1}: \widehat{B}_{1}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)\left(\mathrm{Y}_{\mathrm{i}}-\overline{\mathrm{Y}}\right)}{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}$
3) Point Estimator of $\sigma^{2}: \widehat{\sigma}^{2}=\left(\frac{1}{n-2}\right) \sum_{i=1}^{n} e_{i}{ }^{2} \quad(n=$ number of samples, $e=$ residual $)$

Gauss-Markov Theorem: Least Square Estimator is the Best Linear Unbiased Estimator (BLUE)
BLUE : The BLUE is (1)unbiased estimator and (2)has the smallest average squared error(variance) compared to any unbiased estimators.
(1) unbiased estimator: $\mathrm{E}\left(\widehat{B}_{0}\right)=B_{0}, \mathrm{E}\left(\widehat{B}_{1}\right)=B_{1}$
(2) smallest variance estimator: $\mathrm{V}\left(\mathrm{a} \hat{B}_{0}\right) \leq \mathrm{V}(\mathrm{b} \hat{\theta}), \mathrm{V}\left(\mathrm{a} \hat{B}_{1}\right) \leq \mathrm{V}(\mathrm{b} \hat{\theta}) \quad \hat{\theta}$: any other unbiased estimate

Interval estimator of parameter

- Con(s) of interval estimate
\rightarrow Estimate intervals to provide more flexible information
- Basic form that interval estimator of θ (parameter)

$$
\widehat{\theta}-C * \sigma(\widehat{\theta}) \leq \theta \leq \widehat{\theta}+C * \sigma(\widehat{\theta}) \quad \widehat{\theta}: \text { point estimator of } \theta
$$

i.e., have to know parameter(point estimator, constance, standard deviation)

1) Confidence interval for gradient $\left(B_{1}\right) \rightarrow(100(1-a) \%)$

$$
\Rightarrow \hat{B}_{1}-t_{\frac{a}{2}, n-2} s d\left(\hat{B}_{1}\right) \leq \hat{B}_{1} \leq \hat{B}_{1}+t_{\frac{a}{2}, n-2} s d\left(\hat{B}_{1}\right)
$$

1) $\widehat{B}_{1}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)\left(\mathrm{Y}_{\mathrm{i}}-\overline{\mathrm{Y}}\right)}{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}$: point estimator of B_{1}
2) $t_{\frac{a}{2}, n-2}$: The value of the t-distribution with a degree of freedom of $n-2$ under the significance level (1-a)
3) $\operatorname{sd}\left(\hat{B}_{1}\right)=\sqrt{\frac{\widehat{\sigma}^{2}}{\sum_{i=1}^{n}(X-\bar{X})^{2}}}$: standard deviation of \hat{B}_{1}
4) Confidence interval for y-interval $\left(B_{0}\right)$
\Rightarrow Same form as confidence interval for B_{1}

Hypothesis test for gradient $\left(B_{1}\right)$

What is hypothesis test? Hypothesis and test for unknown parameters

- hypothesis test
$H_{0}: B_{1}=0$ vs $H_{1}: B_{1} \neq 0 \quad\left(H_{0}:\right.$ Null Hypothesis, H_{1} : Alternative Hypothesis $)$
* If B_{1} (gradient) $=0$, There is no relationship between X and Y

$$
t^{*}=\frac{\widehat{B}_{0}-0}{s d\left(\widehat{B}_{1}\right)} \leftarrow \text { test statistic for null hypothesis }
$$

($\widehat{B}_{0}:$ made of data, $0:$ made of hypothesis, sd $\left(\widehat{B}_{1}\right):$ use for scaling)

Prove hypothesis test by one of the two methods

1) $I F\left|t^{*}\right|>t_{\frac{a}{2}, n-2} \rightarrow$ we reject H_{0}
2) p -value $=2 P\left(T>\left|t^{*}\right|\right)$ where $T \sim t(n-2)$

Example (Regression analysis)

The regression equation $\longrightarrow \mathrm{Y}($ Appraised value $)=-29.6+0.0779 \mathrm{X}$ (Area)

Predictor	Coef	SE Coef	T	P	S $=16.9065$
Constant	-29.59	10.66	-2.78	0.016	
Area	0.077939	0.004370	17.83	0.00	

Q1. What are point estimates of the parameters?

$$
\Rightarrow \widehat{B}_{0}=-29.56, \widehat{B}_{1}=0.077939
$$

Q2. What is the standard deviation(standard error) of the parameter?

$$
\begin{aligned}
\Rightarrow s d\left(\hat{B}_{0}\right) & =\sqrt{\widehat{\sigma}^{2}\left[\frac{1}{n}+\frac{\bar{X}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right]}=10.66 \\
s d\left(\hat{B}_{1}\right) & =\sqrt{\frac{\hat{\sigma}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}}=0.004370
\end{aligned}
$$

Example (Regression analysis)

The regression equation $\longrightarrow \mathrm{Y}($ Appraised value $)=-29.6+0.0779 \mathrm{X}$ (Area)

Predictor	Coef	SE Coef	T	P	S $=16.9065$
Constant	-29.59	10.66	-2.78	0.016	
Area	0.077939	0.004370	17.83	0.00	

Q3. What is the T in the above table?

$$
\begin{aligned}
& \Rightarrow H_{0}: B_{1}=0 \text { vs } H_{1}: B_{1} \neq 0 \\
& \mathrm{~T}=t^{*}=\frac{\widehat{B}_{0}-0}{s d\left(\hat{B}_{1}\right)}=\frac{0.077939-0}{0.004370}=17.83
\end{aligned}
$$

Q4. What is the P in the above table?

$$
\begin{aligned}
& \Rightarrow>\mathrm{p}-\text { value }=2 P\left(T>\left|t^{*}\right|\right)=2 P(T>|17.83|) \text { where } T \sim t(13)(n=15 \rightarrow n-2=13)=0.00 \\
& \longrightarrow H_{0} \text { is rejected, } H_{1} \neq 0 \text { i.e., } \mathrm{X} \text { (Area) has significant effect on } \mathrm{Y} \text { (Appraised value) }
\end{aligned}
$$

Q5. What is the S in the above table?

$$
\Rightarrow \mathrm{S}=\widehat{\sigma}=\sqrt{\left(\frac{1}{n-2}\right) \sum_{i=1}^{n} e_{i}^{2}}=16.9065
$$

Chapter IV

- Coefficient of Determination \& ANOVA-

Coefficient of Determination: $\boldsymbol{R}^{\mathbf{2}}$

SSE (Sum of Square Error) $=\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}$
SSR (Sum of Square Regression) $=\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}$
SST(Sum of Square Total) $=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}$
$\rightarrow \mathrm{SST}=\mathrm{SSE}+\mathrm{SSR}$

Coefficient of Determination: $\boldsymbol{R}^{\mathbf{2}}$

Coefficient of Determination $\left(\mathrm{R}^{2}\right)=\frac{\mathrm{SSR}}{\mathrm{SST}}=1-\frac{\mathrm{SSE}}{\mathrm{SST}} \quad(\mathrm{SST}=\mathrm{SSE}+\mathrm{SSR})$
(1) $\frac{\mathrm{SSR}}{\mathrm{SST}}=1 \rightarrow \begin{gathered}\mathrm{SSE}=0 \\ \mathrm{SSR}=\mathrm{SST}\end{gathered}$

There is no error, Completely same
(2) $\frac{\mathrm{SSR}}{\mathrm{SST}}=0 \rightarrow \begin{gathered}\mathrm{SSR}=0 \\ \mathrm{SSE}=\mathrm{SST}\end{gathered}$

Average of $y=u s e x$ (above linear regression line)

Coefficient of Determination: $\boldsymbol{R}^{\mathbf{2}}$

- Property of R^{2}

1. $0 \leq R^{2} \leq 1$
2. $\mathrm{R}^{2}=1: \mathrm{X}$ variable can explain 100% of Y .
i.e., all data are above the regression line
3. $\mathrm{R}^{2}=0: \mathrm{X}$ variable can't explain Y
i.e., X variable does not help description(prediction) of Y at all
4. How much the X variable in use reduced the variance of the Y variable
5. The degree of performance improvement gained by using X information compared to simply using Y average value
6. Quality of X Variables in Use

But, R^{2} always increases even if non-significant variable is added
\square (Adding non-significant variable to y \rightarrow SSE value decreases $\rightarrow R^{2}$ increases)

Adjusted Coefficient of Determination ($\boldsymbol{R}^{\mathbf{2}}{ }_{a d j}$)

- Adjusted R^{2}
$R^{2}{ }_{\text {adj }}=1-\left[\frac{n-1}{n-(p+1)}\right] \frac{\operatorname{SSE}}{\operatorname{SST}}(\mathrm{n}=$ number of data, $\mathrm{p}=$ number of variable $)$
- Property of Adjusted R^{2}

1. Adjusted R^{2} is multiplied by a particular coefficient, so that when a non-significant variable is added, it does not increase
\Rightarrow Adding a non-significant variable to $y \rightarrow$ value of p increases \rightarrow the denominator of a particular constant increases \rightarrow Adjusted R^{2} decreases
Adding a significant variable to $y \rightarrow$ SSE decreases
2. Use to compare explanatory power of regression models with different explanatory variables

Example ($\boldsymbol{R}^{\mathbf{2}}$)

Q. How does the number of salespeople and advertising costs of each store affect sales?

Variable	Estimate	T	P-Value
Constant	141.516	0.706	0.472
The number of salespeople $\left(X_{1}\right)$	13.035	1.854	0.106
Advertising costs $\left(X_{2}\right)$	14.469	3.025	0.019

$$
S S R=54809.18, \quad \mathrm{SSE}=25440.82, \quad \mathrm{SST}=80250.00
$$

A. $\mathrm{R}^{2}=\frac{\mathrm{SSR}}{\mathrm{SST}}=\frac{54809.18}{25440.82}=0.683$

1. The number of salespeople and advertising cost variables reduced the volatility of the sales variable by 68.3%
2. Using the number of salespeople and advertising costs compared to the (simple) average of sales increases explanatory power by 68.3%
3. The degree of "variable quality" of the number of salespeople and advertising costs is 68.3 (based on 100)

Analysis of Variance(ANOVA) in Linear Regression Model

- Analysis of Variance(ANOVA) in Linear Regression Model

1. analysis by using variance
2. Ultimately used for hypothesis testing

$$
\text { variation }\left\{\begin{array}{l}
\mathrm{SST}=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}: \text { total amount of variation in } \mathrm{Y} \\
\mathrm{SSE}=\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}: \text { amount described by the } \mathrm{X} \\
\mathrm{SSR}=\sum_{i=1}^{n}\left(\widehat{Y}_{i}-\bar{Y}\right)^{2}: \text { amount described by the Error }
\end{array}\right.
$$

Analysis of Variance(ANOVA) in Linear Regression Model

$\frac{S S R}{S S E}$: Fractions to see how large the SSR is compared to SSE

$$
\frac{S S R}{S S E}>1
$$

- amount described by the $\mathrm{X}>$ amount described by the Error
- X variable has significant effect on description(prediction) of Y variable
- The coefficient of the X variable(gradient) is not 0

$$
0 \leq \frac{S S R}{S S E} \leq 1
$$

- amount described by the $X<$ amount described by the Error
- X variable has non-significant effect on Y variable
- Statistically, the coefficient of the X variable(gradient) is 0

Analysis of Variance(ANOVA) in Linear Regression Model

Question. In $\frac{S S R}{S S E}>1$ case, how can judge it is big ?
Answer. If we know the distribution, we can judge statistically. However, the distribution cannot be defined directly But, SSE, SSR follows Chi-Square Distribution(Parameter : degree of freedom)

Let Y_{1} be $\chi^{2}\left(v_{1}\right)$ and Y_{2} be $\chi^{2}\left(v_{2}\right)$, define $F=\frac{Y_{1} / v_{1}}{Y_{2} / v_{2}}$
F has an F -distribution with v_{1} degrees of freedom in the numerator and v_{2} degrees of freedom in the denominator, denoted as $\mathrm{F}\left(v_{1}, v_{2}\right)$

In case of simple linear regression,

$$
\begin{gathered}
\operatorname{SSR} \sim \chi^{2}\left(v_{1}=1\right), \operatorname{SSE} \sim \chi^{2}\left(v_{1}=n-2\right) \\
F^{*}=\frac{S S R / 1}{S S E / n-2} \sim F(1, n-2)
\end{gathered}
$$

ANOVA Table

Source	DF	SS	MS	F	P
Model	1	SSR	MSR	F^{*}	P-Value
Error	$\mathrm{n}-2$	SSE	MSE		
Total	$\mathrm{n}-1$	SST			

$$
\begin{gathered}
H_{0}: B_{1}=0 \text { vs } H_{1}: B_{1} \neq 0 \\
F^{*}=\frac{S S R / 1}{S S E / n-2}=\frac{M S R}{M S E} \sim F(1, n-2) \\
\text { p-value }=P\left(\mathrm{Y}>F^{*}\right) \text { where } Y \sim F(1, n-2)
\end{gathered}
$$

If F^{*} value is large(MSR is relatively enough large than MSE), H_{0} is rejected
F^{*} value(test statistic) is large \rightarrow The probability that the T value is greater than the F^{*} value is less
$\rightarrow \mathrm{p}$-value is small \rightarrow Reject the null hypothesis $\left(H_{0}\right)$

Example (ANOVA)

Source	DF	SS	MS	F	P
Model	2	54809.18	27404.59	$F 7.540^{*}$	0
Error	7	25440.82	3634.40		
Total	9	80250.00			

$$
\begin{gathered}
H_{0}: B_{1}=B_{2}=0 \text { vs } H_{1}: \text { At least one } B \neq 0 \\
F^{*}=\frac{M S R}{M S E}=\frac{54809.18 / 2}{25440.82 / 7}=\frac{27404.59}{3634.40}=7.540 \\
\text { p-value }=P(Y>7.540) \approx 0, \text { where } Y \sim F(2,7)
\end{gathered}
$$

At least one $B \neq 0$ (The number of salespeople or advertising costs or both are significant)

Thank you \bullet
 -

