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Chapter I

-Definition of Linear Regression-
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Definition of Linear Regression Model

Linear Regression Model: Model that expresses Y(output variable) as a linear combination of X(input variable)

* Linear combination : Combine variables by adding/subtracting (constant multiplication)
eX) Y = BO + Ble + 32X2 + .-+ Bpo

«— gradient(B,)

<— Yy-intercept(By)

Y=Bo+ B1X1

Purpose 1. Explain the relationship between X variables and Y variables
2. Predict future Y(output variables)



Definition of Linear Regression Model

y ...................................................................................

By + By Xy <

N Y =B+ BiX+e

K £(x) = By + By X

\ i

X

Y = can be explained by X(f (x)) + can’t be explained by X (¢)

€ = random error



Assumption of Linear Regression Model

@® Assumption of random error

m = ~N(,02) i=123,..n

¢ ; conforms to a normal distribution = E(g;) = 0,V(e;) = o2 for alli

InY =By, + B;X+ ¢, € Follows probability distribution(normal distribution)
So, Y also follows any probability distribution

1. E(Yl) = E(BO + 31Xi) + E(E) = BO + BIXi 2 V(Yl) = V(BO + 31Xi) + V(E) = 02
[BO + B, X; Is constant - E(By, + B;X;) = By + B{X; [BO + B, X; Is constant - V(By + B;X;) =0

E(e;)) =0 V(e ;) = o*

i.e, Y;~N(By+ B1X;,0%) i=1,2,-,n



Yi

Assumption of Linear Regression Model

’\yizBO+lei+£

0)

.\ E(x) = BO ~+ le,:

Xi

i.e, Y;~N(By+ B1X;,0%2) i=1,2,,n



Linear Regression Model

N Y =B+ BX+e

f(x) = By + B;X

B0+B]_X1< Y=BO+B1X1+BZX2+.”+Bpo_I_S

E(Y) =By + By X; + By Xy + -+ B, X,

View Point.

Find a linear regression line that describes the relationship
between the input variable(X) and the mean of output variable(Y)

i.e., Find Parameter(B,, B;,., B,) using the function of data N



Linear Regression Model

N Y =B+ BX+e

>.\ £(x) = By + B;X

BO+31X1<E Y=Byg+ B X;+ B X, ++ By X, +¢

E(Y) =By + By X; + By Xy + -+ B, X,

View Point.

Find a linear regression line that describes the relationship
between the input variable(X) and the mean of output variable(Y)
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Linear Regression Model

E(Y) = f(X)= By + B.X



Linear Regression Model

E(Y) = f(X)= B, + B.X

14



Linear Regression Model

E(Y) = f(X)= By + B, X

Find Best Parameter(B,, B;,., B,) using data



Linear Regression Model

E(Y) = f(X)= By + B, X

Find Best Parameter(B,, B;,., B,) using data

How to find good parameter?

16



Chapter II

- Parameter Estimation -



Parameter Estimation

Question. Let’s compare with red and blue. Which one is correct prediction line?

18



Parameter Estimation

Question. Let’s compare with red and blue. Which one is correct prediction line?

o red!!

19



Parameter Estimation

Question. Let’s compare with red and blue. Which one is correct prediction line?

dy+d, < d; +d, X

Answer. Red is a better regression line than blue

20



Parameter Estimation

d1+ d2+ +dn=0
(1) di+d5+ - +d% =0

d =Y, — E(Y1)
=Y; — (Bog +B;1X;)

n
d? = Z{Yi —(By + B;X;)}* <*— CostFunction
=1

L=

F'M 3
Jy

d;
i.e., Finding the smallest Cost function is finding the best parameters !!!
n
X _ 2 5
min {Yl _(BO + lel)}
BOrBl - 1
=

*¢ Cost Function vs Lost Function

Lost Function: loss of a data vs Cost Function: Sum of loss functions for all data 1



Parameter Estimation

d1+ d2+ +dn=0

y (1) di+d5+ - +d% =0
d dy =Y, —E(Yy)
? =Y; — (Bo +B1X1)
n n
z d? = Z{Yi —(By + B;X;)}* <*— CostFunction
i=1 i=1
d;
i.e., Finding the smallest Cost function is finding the best parameters !!!
n
X _ 5
min E{Yl _(BO + lel)}
Bo,B1 4
i=1
# Cost Function vs Lost Function How to find the smallest Cost function?

Lost Function: loss of a data vs Cost Function: Sum of loss functions for all data 29



Parameter Estimation

In linear regression, Cost Function is always convex = globally optional solution exists

Global Optimal Solution Local Optimal Solution

Convex Function Non-Convex Function

i.e.,, The way that finds the smallest cost function(estimates best parameter) is
Finding a point where the derivative is 0 23



Parameter Estimation

® Partial derivative based on Parameter(B4, By)
(B4: gradient, , By: y-intercept)

n
Cost Function: Z{Yi —(Bg + B1Xj)}?

i=1
n
dC(By, B
B, partial derivative — (6]; ) = =2 z Y, - (Bp +BX;) =0
0 :
1=1
o 0C(Bo,By) _ N\
B, partial derivative — 9B =—=2) Y;—(By+BX))X;=0
1 i=1
The result of partial derivative
By =Y —Bo X The linear regression function that has best parameter
B. = ?:1(Xi_x)(Yi_?) f(x) =Y = E() +§1X




Least Squares Estimation Algorithm

Goal. Find estimator of By and B, (i.e., EO and El)

Step1. Cost Function(Squared the sum of the difference between the actual y value and y value on the regression line)
n

> % =(B + BL XY

=1

Step2. Find By, B; to minimize Cost Function
n

min Z{Yl _(BO + lei)}z
=1

BO!Bl

Step3. Find the point where the derivative(gradient) is 0

n
9C(B,, B
(Bo.By) _ —ZZYi — (By +B1X) =0
9B, -
dC(By, B,) :
Y =2 ) Y,— (By+B;X)X; =0
9B, ,
-

=1

: ~ S B v B Ziz1 Xi—X)(Yi-Y)
Solutions. By =Y —B; X, B; = §?=1(Xi—>_<)2




Residual

=By + B;x+¢ y .
Y 0 ! y =By +Bix+e

E = By + B1x ~ ~
E (y) 0 1 ; § =B, +B;x
Bo By | Bo+Bix < |
X
. X
e=y — E(y) e=y -y
[BO, B, is not fixed value, just status of parameter B,, B is fixed value
¢ follows normal distribution e is error of fixed values (constant)

e(residual) = the value that e(random error) is actually implemented



Chapter III

- Parameter Inference -



Parameter inference

® There are two ways of infer parameters

1. Estimator

2. Hypothesis test



Estimator of parameter

® Estimators(B,, B;) that calculated by using Least Squared Estimation Algorithm

=1 X=X (Yi—-Y)
L1 (X;—X)?

§0=Y_§1X, §1=

P Estimator : a function of the sample(data)
Bo, By

P Usage of Estimator: estimate unknown parameter(B,, B;)

» Types of Estimator - Point Estimator
— Interval Estimator



Point estimator of parameter

Y; = By + B X; + g ~N(0,0%) i=1,2,--,n

1) Point Estimator of By: By =Y —B; X

: : . B Ziz1 Xi—X)(Yi—Y)
2) Point Estimator of B;: B; = 211“=1 X%

. . ~ 1 .
3) Point Estimator of ¢2: 6%= (E) n e’ (n=number of samples, e = residual)

Gauss-Markov Theorem: Least Square Estimator is the Best Linear Unbiased Estimator (BLUE)

BLUE : The BLUE is (1)unbiased estimator and (2)has the smallest average squared error(variance)
compared to any unbiased estimators.

(1) unbiased estimator : E(B,) = By, E(B;) = B;
(2) smallest variance estimator : V(aB,) < V(b6), V(aB;) <V(bd) 8: any other unbiased estimate



Interval estimator of parameter

» Con(s) of interval estimate
— Estimate intervals to provide more flexible information

» Basic form that interval estimator of 8 (parameter)

6 —C = G(g) <0<0 +Cx0(0) 8:pointestimator of 6

i.e., have to know parameter(point estimator; constance, standard deviation)

1) Confidence interval for gradient( B;) — (100(1 — a)%) 2) Confidence interval for y-interval( B,)
mp 5, — ta n_ZSd(§1) <B, <B +ta n_ZSd(§1) m) Same form as confidence interval for B,
2’ 2’

i1 (X —X)(Y;—Y)

1) B, = —
)1 D (X;—X)?

: point estimator of By

2) ta_ ., : The value of the t-distribution with a degree of freedom of n-2 under the significance level (1-a)
>

. 0° ~
3)sd(B;) = ——: standard deviation of B
(5) J (X = X)? '

31



Hypothesis test for gradient(B)

What is hypothesis test? Hypothesis and test for unknown parameters

@® hypothesis test
Hy:B; =0 vs Hy;:B;y # 0 (Hy: Null Hypothesis, H;: Alternative Hypothesis)

*1f By (gradient)=0, There is no relationship between X and Y

By — 0
t* = ——— < test statistic for null hypothesis
Sd(Bl)

(Bo:made of data, 0:made of hypothesis, sd(B,):use for scaling)

Prove hypothesis test by one of the two methods

1) IF |t*]| > t%,n—z — we reject Hy

2) p—value = 2P(T > |t*|) where T~t(n — 2)
Generally, if p-value is less than 0.05 or 0.01, the null hypothesis is rejected



Example (Regression analysis)

The regression equation == Y(Appraised value) =-29.6 + 0.0779X(Area)

sECoef | T | P [EEERTEIE

Constant -29.59 10.66 -2.78 0.016
Area 0.077939 0.004370 17.83 0.00

Q1. What are point estimates of the parameters?
=> B, =-29.56, B; =0.077939

Q2. What is the standard deviation(standard error) of the parameter?

=> sd(BO)—\/Azl z:‘loa—) =10.66

sd(Bl)=\/2n = 0.004370
=1\




Example (Regression analysis)

The regression equation == Y(Appraised value) =-29.6 + 0.0779X(Area)

sECoef | T | P [EEERTEIE

Constant -29.59 10.66 -2.78 0.016
Area 0.077939 0.004370 17.83 0.00

Q3. What is the T in the above table?
=> HO:Bl = O VS Hl:Bl = = 0
N By—-0 0.077939 —0
T=t"= — =
sd(B;) 0.004370

Q4. What is the P in the above table?
=> p—value = 2P(T > [t*]) = 2P(T > |17.83|) where T~t(13)(n=15 - n—-2=13) = 0.00

mm) [, isrejected, H; # 0 i.e., X(Area) has significant effect on Y(Appraised value)

=17.83

Q5. What is the S in the above table?
=>S=6= \/(i) n e =16.9065

n-2




Chapter IV

- Coefficient of Determination & ANOVA-



Coefficient of Determination: R?

Observed values of the dependent variable
(actual y from data)

Estimated value of y for the given x
(v above linear regression line (explain y using x) )

Average value of the dependent variable
(average value of y (explain y using only y))

SSE(Sum of Square Error) = Y1, (Y; — ;)2
SSR(Sum of Square Regression) = Y1, (¥; — ¥)?
SST(Sum of Square Total) = X1, (Y; — Y)*

— SST = SSE + SSR



Coefficient of Determination: R?

) 2 TSSOSO _
v <
Y, -7
AT ®
1 T
X
Coefficient of Det ination(R? —SSR—l 5>k (SST = SSE + SSR)
oefficient of Determination(R*) = ST ST
(1) ﬂ{ -1 - SSE =10 ‘ There is no error, Completely same
SST SSR = SST
SSR SSR = 0 : : :
= ‘ Average of y = use x (above linear regression line
oSSTO_)SSE=SST ge ofy = usex (abov 8 )

37



Coefficient of Determination: R?

@® Property of R?

1.0<R?<1

2.R?=1: X variable can explain 100% of Y.
i.e., all data are above the regression line

3. R?=0: X variable can’t explain Y
i.e., X variable does not help description(prediction) of Y at all

4. How much the X variable in use reduced the variance of the Y variable
5. The degree of performance improvement gained by using X information compared to simply using Y average value
6. Quality of X Variables in Use

But, R? always increases even if non-significant variable is added
m) (Adding non-significant variable toy — SSE value decreases - R? increases)



Adjusted Coefficient of Determination (R?,4;)

@® Adjusted R?
, n—1 SSE
n—(p+ 1)|SST

R? adj = (n = number of data, p = number of variable)

@® Property of Adjusted R?
1. Adjusted R? is multiplied by a particular coefficient,
so that when a non-significant variable is added, it does not increase

=P Adding a non-significant variable toy — value of p increases
— the denominator of a particular constant increases — Adjusted R? decreases
m) Adding a significant variable toy — SSE decreases

2. Use to compare explanatory power of regression models with different explanatory variables



Example (R?)

Q. How does the number of salespeople and advertising costs of each store affect sales?

Constant 141.516 0.706 0.472
The number of salespeople (X;) 13.035 1.854 0.106
Advertising costs (X5) 14.469 3.025 0.019

SSR =54809.18, SSE =25440.82, SST =80250.00

ssR _ 54809.18
A R = ssT 2544082 — 0.683
1. The number of salespeople and advertising cost variables reduced the volatility of the sales variable by 68.3%
2. Using the number of salespeople and advertising costs compared to the (simple) average of sales
increases explanatory power by 68.3%

3. The degree of "variable quality” of the number of salespeople and advertising costs is 68.3 (based on 100)




Analysis of Variance(ANOVA) in Linear Regression Model

@ Analysis of Variance(ANOVA) in Linear Regression Model
1. analysis by using variance

2. Ultimately used for hypothesis testing

SSE = Y™ ,(Y; — ¥;)? : amount described by the X

SST = Y™ .(Y; —Y)?: total amount of variation in Y
variation
SSR = YT . (¥; — Y)? : amount described by the Error




Analysis of Variance(ANOVA) in Linear Regression Model

SSR : .
S : Fractions to see how large the SSR is compared to SSE

SSR o1
SSE

- amount described by the X > amount described by the Error
- X variable has significant effect on description(prediction) of Y variable
- The coefficient of the X variable(gradient) is not 0

- SSR -
0= SSE — 1
- amount described by the X < amount described by the Error
- Xvariable has non-significant effect on Y variable
- Statistically, the coefficient of the X variable(gradient) is 0



Analysis of Variance(ANOVA) in Linear Regression Model

: SSR . s
Question. In T 1 case, how can judge it is big ?

Answer. If we know the distribution, we can judge statistically. However, the distribution cannot be defined directly
But, SSE, SSR follows Chi-Square Distribution(Parameter : degree of freedom)

",

2/,

F has an F-distribution with v; degrees of freedom in the numerator and v, degrees of
freedom in the denominator, denoted as F(v4, v5)

LetY; be ¥*(v,) and Y, be x*(v,), define F =

In case of simple linear regression,

SSR~ ¥*(v; =1), SSE~ Y (vy =n-—2)
SSR/1

- SSE/ ,

F* ~F(1,n-2)



ANOVA Table

Source ____-

Model SSR MSR P-Value
Error n-2 SSE MSE
Total n-1 SST

HO:B]_ =0 vs Hl:Bl *0

SSR/

. 1 MSR

F* = = ——~F(1l,n—2
SSE/ B MSE (1,n )

p—value = P(Y > F*) where Y~F(1,n — 2)

4

If F*value is large(MSR is relatively enough large than MSE), H, is rejected

F*value(test statistic) is large — The probability that the T value is greater than the F*value is less
— p-value is small = Reject the null hypothesis(H,)



Example (ANOVA)

Source ____-

Model 54809.18 27404.59 F7.540*
Error 7 25440.82 3634.40
Total 9 80250.00

Hy:By =B, = 0 vs Hi:AtleastoneB +# 0

msg _ 04809.18/  27404.59

F* = = 3634.40

= 2544082, = 7540

p—value = P(Y > 7.540) = 0,where Y~F(2,7)

At least one B # 0 (The number of salespeople or advertising costs or both are significant)
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