UNIVERSITY

# Research on Multi-class Road Obstacle Recognition and Decision Based on YOLOP Combined YOLOv5 Algorithm 

Ganrong Dong, Tiancong Han, Chenxiao Feng

SCH Univ.<br>Dept. of Al and Bigdata<br>Gyeongseon Baek<br>baekgs011109@sch.ac.kr

## Contents

1. Introduction
2. Dataset
3. Method
4. Experiment and Result
5. Conclusion
6. How to apply

## 1. Introduction

## Autonomous driving is considered a popular trend



The intelligence level is not high
The complexity of road obstacle recognition is relatively high


## 2. Dataset

- S2TLD (Small to Traffic Light Dataset)
> A traffic signal dataset presented by Shanghai Jiao Tong University
> Comprising 10,000 traffic signal data captured under various environmental conditions and time periods
- CCTSDB (Chinese Traffic Sign Detection Benchmark)
> A Chinese traffic sign dataset created by Jiangsu University of Science and Technology
- nuScenes
- A large-scale open dataset for autonomous driving developed by the Motional team
- BDD100K (Berkeley DeepDrive 100K)
> A vehicle detection and lane dataset developed by Berkeley DeepDrive, including 100,000 images


## 2. Dataset

## - S2TLD (Small to Traffic Light Dataset) <br> > A traffic signal dataset presented by Shanghai Jiao Tong University <br> > Comprising 10,000 traffic signal data captured under various environmental conditions and time periods <br> - CCTSDB (Chinese Traffic Sign Detection Benchmark) <br> $>$ A Chinese traffic sign dataset created by Jiangsu University of Science and Technology

- nuScenes
$>$ A large-scale open dataset for autonomous driving developed by the Motional team
- BDD100K (Berkeley DeepDrive 100K)
> A vehicle detection and lane dataset developed by Berkeley DeepDrive, including 100,000 images


## 3. Method

### 3.1. YOLOP (You Only Look Once for Panoptic Driving Perception)

- A deep learning model that simultaneously performs object detection and segmentation
- A method that processes three tasks simultaneously through a network
- The capability to build multi-tasks that can share information between multiple tasks



## 3. Method

### 3.1. YOLOP (You Only Look Once for Panoptic Driving Perception)



Encorder

- Backbone
- Neck
- Extracts features from input images and transforms them into refined information

Decorder

- Detect head
- Lane line segment head
- Drivable area segment head


## 3. Method

### 3.1. YOLOP (You Only Look Once for Panoptic Driving Perception)

$$
L_{d e t}=\alpha_{1} L_{\text {class }}+\alpha_{2} L_{o b j}+\alpha_{3} L_{b o x}
$$

- Loss function used exclusively in vehicle detection
- $\alpha 1, \alpha 2, \alpha 3$ are adjustable parameters for controlling the weights of each loss component

$$
L_{\text {all }}=\gamma_{1} L_{\text {det }}+\gamma_{2} L_{\text {da-seg }}+\gamma_{3} L_{\text {ll-seg }}
$$

- The comprehensive loss function used in this model
- $\gamma 1, r 2, \gamma 3$ are adjustable parameters for controlling the weights of each loss component


## 3. Method

### 3.1. YOLOP (You Only Look Once for Panoptic Driving Perception)

TABLE I. CAR Detection Result

| Network | Recall(\%) | mAP50(\%) | Speed(fps) |
| :---: | :---: | :---: | :---: |
| Faster R-CNN | 77.2 | 55.6 | 5.3 |
| DLT-Net | 89.4 | 60.2 | 8.6 |
| YOLOP | 89.2 | 76.5 | 41 |

TABLE II. Drivable Area Seg Result

| Network | mIoU(\%) | Speed(fps) |
| :---: | :---: | :---: |
| DLT-Net | 71.3 | 9.3 |
| PSPNet | 89.6 | 11.1 |
| YOLOP | 89.2 | 41 |

TABLE III. Lane Detection result

| Network | $\mathbf{I o U}(\%)$ | Accuracy(\%) |
| :---: | :---: | :---: |
| SCNN | 15.8 | 35.79 |
| Enet-SAD | 16.0 | 36.56 |
| YOLOP | 26.2 | 70.5 |

## 3. Method

### 3.2. YOLOv5 (You Only Look Once version 5)



Input

- Input data is received


## Backbone

- Extracts feature maps from the input data
- Includes Focus structure, CSP structure, which enhances inference speed


## 3. Method

### 3.2. YOLOv5 (You Only Look Once version 5)



Neck

- Mixes and combines feature maps extracted from the backbone


## Prediction

- Object detection and prediction
- Preservation of boxes with the highest probability


## 3. Method

### 3.2. YOLOv5 (You Only Look Once version 5)



|  | Average <br> processing time | Average <br> recognition time | Average <br> frame rate |
| :---: | :---: | :---: | :---: |
| YOLOv6 | 7.80 ms | 9.54 ms | 78.34 FPS |
| YOLOv5 | 7.85 ms | 9.58 ms | 82.98 FPS |
| YOLOv7 | 9.64 ms | 9.49 ms | $79.98 F P S$ |



- YOLOv5 exhibits fewer false positives and missed detections, providing a more balanced and stable result


## 3. Method

### 3.3. Similar triangle method



- Using the similar triangle method
- Calculating the actual distance between the object and the camera

$$
D=(F * W) / P
$$

- D : Distance from the target to the camera
- F: Given camera's focal length
- W:Actual height of the target
- $P$ : Pixel width in the $x$-direction or pixel height in the $y$-direction occupied by the target in the image
> Obtained from YOLOv5 target detection results


## 3. Method

### 3.3. Similar triangle method



Depth estimation method

- More precise tracking of object positions
- Requires extensive computation and may lead to longer processing times

Similar triangle method

- Due to its simple calculations, it is fast and efficient
- Economical and practical
- The drawback is that it requires prior knowledge of the actual object's size

3. Method

Lane Detection

Object Detection
YOLOv5

## 4. Experiment and Result

## Experimental Procedure

1. Data Conversion
> Convert data from .xml format to YOLO format or text format
2. Preparation of YOLOv5 Format Data
$>$ Maintain a ratio of 9:1 for training and test sets while preparing data in YOLOv5 format
3. Cloud Training
4. Data and File Transfer
5. Virtual Environment Setup
$>$ Configure a virtual environment for running the

TABLE IV. Training server parameters

| GPU | RTX 3080 |
| :---: | :---: |
| CPU | 12 vCPU Intel(R) Xeon(R) Platinum 8255C |
|  | CPU @ 2.50GHz |
| Memory | 10 GB |
| RAM | 43 GB |

TABLE V. Training parameters

| Weight | yolov5s.pt |
| :---: | :---: |
| Batch size | 16 |
| Workers | 8 |
| Epoch | 100 |
| Other parameters | Default |

YOLOv5 code
6. Model Training

## 4. Experiment and Result



Fig. 6. Result of a traffic lights


Fig. 7. Result of traffic signs


Fig. 8. Result of pedestrians

## 4. Experiment and Result

TABLE VI. Traffic Light, Traffic sign, Pedestrian model training RESULTS

| Class | Precision <br> $(\%)$ | Recall <br> $(\%)$ | $\mathrm{mAP} @ 0.5(\%)$ |
| :---: | :---: | :---: | :---: |
| red | 95.8 | 97.2 | 97.7 |
| yellow | 99.9 | 87.7 | 93.7 |
| green | 94.3 | 94.9 | 96.4 |
| Off | 90.7 | 92.2 | 91.9 |
| warning | 98.9 | 99.5 | 99.6 |
| prohibitory | 97.7 | 98.2 | 99.2 |
| mandatory | 99.0 | 98.5 | 99.6 |
| Pedestrian | 83.2 | 68.2 | 68.0 |

## 4. Experiment and Result



## 4. Experiment and Result


[ In the case of applying it to autonomous driving ]

## 4. Experiment and Result

TABLE VII. Priorities and decisions

| Priority | Decision |
| :---: | :--- |
| Distance | The distance between the self-driving car and the car or <br> person in front of it is divided into three risk levels. Less than <br> 5 meters is high risk, between 5 meters and 10 meters is <br> moderate risk, and greater than 10 meters is low risk. <br> According to different risk levels, make different decisions <br> on speed. For high risk, you must slow down to a stop. If the <br> risk is medium, it can be slowed down appropriately. If the <br> risk is low, the speed can be maintained. |
| Traffic light | When the red light is detected, the vehicle stops and waits. <br> If the light is green, keep going. |
| Traffic sign | There are three kinds of signs that can be recognized by the <br> driving system: indicating signs, prohibiting signs and <br> warning signs. The system adjusts the driving state of the <br> vehicle according to the identification result. For example, if <br> the no left turn sign is recognized, the vehicle is forbidden to <br> turn left on the current road. |
| Lane line | Based on the type of lane identified by the driving system, <br> plan the next ride. For example, if the lane line is identified <br> as a sidewalk, reduce the speed to pass. If the dotted line is <br> recognized, the vehicle can change lanes. |
| Driveable | The driveable zone ensures that vehicles remain in a safe <br> zone. It replaces lane lines when there are no lane lines. <br> According to the results identified by the system, constantly <br> revise the driving route. |

## 4. Experiment and Result



## Decision Priority Example 1

- If the distance to the vehicle or person in front is less than 5 meters, distance priority is the highest
- In the example shown in the adjacent figure, although the green light is recognized, since the distance from the car in front is less than 5 meters, "stop" is selected


## 4. Experiment and Result



## Decision Priority Example 2

- If the distance between the vehicle and the vehicle in front is greater than 5 meters and less than 10 meters, it is considered as medium risk
- In the example shown in the adjacent figure, a zebra crossing is recognized, so the driving system decides to go straight and pass slowly


## 5. Conclusion

- By selecting a combination of YOLOP and YOLOv5 models, excellent results are obtained
- An accuracy of over $90 \%$ is achieved in recognizing all parts except pedestrian
- When applied to actual vehicles, it yielded good results
$\rightarrow$ To optimize the methods used in this study and make them applicable in a wider range of scenarios, it seems necessary to explore various directions for improvement


## 6. How to apply

- 드론으로 경로 탐색을 할 때, 차선 및 여러 객체를 감지하고 거리를 추정하는 데에 도움이 될 것이라고 생각함

UNIVERSITY

Thank you

