

2024 SAIL Seminar

Communication-Efficient Learning of Deep Networks from Decentralized Data

H. Brendan McMahan, Eider Moore, et al., arXiv 2016 (# of citation: 13496)

순천향대학교 미래융합기술학과

Senseable AI 연구실

석사과정 김병훈

The FedAvg. Algorithm

Experimental Results

Conclusion and Future Work

Background and Requirement

Backgrounds

- Many people use mobile phones
- Mobile phones have data that contains personal information
- Training models with this data maximises usability for users

Problems

- Traditional centralised processing can expose privacy risks
- Centralisation of data creates bottlenecks

Requirements

• Couldn't we advance the model without transferring data?

Contribution

Solution

• Introducing federated learning, a technique for training shared models without having to store rich data centrally.

Summary of how it works

• Combine the server performing the model average with each client performing the local SGD

Contribution

- Decentralising to solve bottlenecks
- Simple and practical algorithm using SGD and model averaging
- Extensive empirical evaluation

Basic Concepts

Defining terms

- Non-IID: means that the data held by each distributed node is of a very different character and an imbalance of data exists.
- Data imbalance: Due to variations in mobile phone usage among users, there is an imbalance in the amount of data collected.

Related works

Paper	Year	Methods	Limitation	
Distributed training strategies for the structured perceptron [28]	2010	Averaging local training	Data imbalance Not considering non-IID	
Parallel training of deep neural networks with natural gradient and parameter averaging [31]	2015	models		
Information-theoretic lower bounds for distributed statistical estimation with communication constraints [45]	2013			
Communication efficient distributed optimization using an approximate newton-type method [34]	2013	Make distributed data	Data imbalance Not considering non-IID Few clients	
Trading computation for communication: Distributed stochastic dual coordinate ascent [40]	2013	communication more efficient		
Adding vs. averaging in distributed primal-dual optimization [27] 2015				
Communication-efficient distributed optimization of self-concordant empirical loss [43]	2015			
Communication-efficient algorithms for statistical optimization [44]	2012			
Communication complexity of distributed convex learning and optimization [3]		Global model averaging	Not considering non-IID Performance issues	
Parallelized stochastic gradient descent [46]	2010			

2. The FedAvg. Algorithm

Baseline

Stochastic Gradient Descent (SGD) performs the gradient calculation for one batch of clients (randomly selected) in one round.

• Use Large-batch because it doesn't cost much for a large number of clients

 η : learning rate k: number of clients n: number of data samples w_t : current model weight $w_{t+1} \leftarrow w_t - \eta \Sigma_{k=1}^K \frac{n_k}{n} g_k$ where $\Sigma_{k=1}^K \frac{n_k}{n} g_k = \nabla f(w_t)$

$$w_{t+1}^k \leftarrow w_t - \eta g_k \qquad ext{and then}, \qquad w_{t+1} \leftarrow \Sigma_{k=1}^K rac{n_k}{n} w_{t+1}^k$$

2. The FedAvg. Algorithm

FedAvg algorithm's pseudo code

Algorithm 1 FederatedAveraging. The K clients are indexed by k; B is the local minibatch size, E is the number of local epochs, and η is the learning rate.

Server executes:

initialize w_0 for each round t = 1, 2, ... do $m \leftarrow \max(C \cdot K, 1)$ $S_t \leftarrow (\text{random set of } m \text{ clients})$ for each client $k \in S_t$ in parallel do $w_{t+1}^k \leftarrow \text{ClientUpdate}(k, w_t)$ $w_{t+1} \leftarrow \sum_{k=1}^K \frac{n_k}{n} w_{t+1}^k$

ClientUpdate(k, w): // Run on client k $\mathcal{B} \leftarrow (\text{split } \mathcal{P}_k \text{ into batches of size } B)$ for each local epoch i from 1 to E do for batch $b \in \mathcal{B}$ do $w \leftarrow w - \eta \nabla \ell(w; b)$ return w to server

2. The FedAvg. Algorithm

Demonstrate effectiveness

Learning about small datasets

Datasets and Experimental design

Datasets

- MNIST (2NN and CNN)
- CIFAR-10 (2NN and CNN)
- The Complete Works of William Shakespeare (LSTM)

Experimental design

- 1. Impact of client participation rate C
- 2. Per-client Computation amount (Batch size and Epoch)
- 3. Evaluate FedSGD / FedAvg Algorithms Performance

Impact of client participation rate C

2NN	III —— III) ——	Non-	IID ———
C	$B = \infty$	B = 10	$B = \infty$	B = 10
0.0	1455	316	4278	3275
0.1	1474 (1.0×)	87 (3.6×)	1796 (2.4×)	$664 (4.9 \times)$
0.2	1658 (0.9×)	77 (4.1×)	$1528(2.8\times)$	619 (5.3×)
0.5	— (—)	$75(4.2\times)$	— (—)	443 (7.4×)
1.0	— (—)	70 (4.5×)	— (—)	380 (8.6×)
CNI	N , $E = 5$			
0.0	387	50	1181	956
0.1	339 (1.1×)	$18(2.8\times)$	$1100 (1.1 \times)$	$206(4.6\times)$
0.2	337 (1.1×)	$18(2.8\times)$	978 (1.2×)	200 (4.8×)
0.5	$164(2.4\times)$	$18(2.8\times)$	1067 (1.1×)	261 (3.7×)
1.0	246 (1.6×)	16 (3.1×)	— ` (—)́	97 (9.9×)

MNIST

Set up the rest of the experiment with C=0.1

Per-client calculations(Batch size and Epoch)

	MNIS	T CN	N, 99% a	CCURACY	
CNN	E	B	\boldsymbol{u}	IID	Non-IID
FedSGD	1	∞	1	626	483
FEDAVG	5	∞	5	$179 (3.5 \times)$	$1000 (0.5 \times)$
FEDAVG	1	50	12	65 (9.6×)	600 (0.8×)
FEDAVG	20	∞	20	234 (2.7×)	672 (0.7×)
FEDAVG	1	10	60	34 (18.4×)	350 (1.4×)
FedAvg	5	50	60	29 (21.6×)	334 (1.4×)
FEDAVG	20	50	240	32 (19.6×)	$426 (1.1 \times)$
FEDAVG	5	10	300	$20(31.3\times)$	229 $(2.1\times)$
FedAvg	20	10	1200	$18(34.8\times)$	$173 (2.8 \times)$
	SHAKESPEARE LSTM, 54% ACCURACY				
LSTM	E	B	\boldsymbol{u}	IID	Non-IID
FEDSGD	1	∞	1.0	2488	3906
FedAvg	1	50	1.5	$1635 (1.5 \times)$	549 $(7.1\times)$
FedAvg	5	∞	5.0	613 (4.1×)	597 (6.5×)
FEDAVG	1	10	7.4	460 (5.4×)	164 (23.8×)
FEDAVG	5	50	7.4	401 (6.2×)	152 (25.7×)
FEDAVG	5	10	37.1	$192(13.0\times)$	$41 (95.3 \times)$

Evaluate FedSGD / FedAvg Algorithms Performance

The Complete Works of William Shakespeare

CIFAR-10

ACC.	80%	82%	85%
SGD	18000 (—)	31000 (—)	99000 (—)
FEDSGD	$3750 (4.8 \times)$	$6600 (4.7 \times)$	N/A (—)
FedAvg	280 (64.3×)	630 (49.2×)	2000 (49.5×)

Conclusion

Conclusion

- 1. 적은 수의 통신으로 고성능 모델을 얻을 수 있음
- 2. 실용적인 알고리즘

Future work

- 1. 개인정보 보호를
- 2. differential privacy나 secure multi-party computation등의 기술들을 적용

How to apply?

2024년도 석사과정생연구장려금지원사업 신규과제 연구계획서

	국문 차세대 지능형 교통안전시스템(C-ITS)을 위한 영상기반 도로위험행동 예측모델의 맞춤형 준지도 연합 학	
과제명		Customised semi-supervised federated learning of video-based
	영문 traffic risk behaviour prediction models for	
	Cooperative-Intelligent Transport Systems(C-ITS)	

How to apply?

How to apply?

