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1. Introduction

Backgrounds

• Many people use mobile phones

• Mobile phones have data that contains personal information

• Training models with this data maximises usability for users

Problems

• Traditional centralised processing can expose privacy risks

• Centralisation of data creates bottlenecks

Requirements

• Couldn't we advance the model without transferring data?
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1. Introduction

Solution

• Introducing federated learning, a technique for training shared models without having to store rich data 

centrally.

Summary of how it works

• Combine the server performing the model average with each client performing the local SGD

Contribution

• Decentralising to solve bottlenecks

• Simple and practical algorithm using SGD and model averaging

• Extensive empirical evaluation
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1. Introduction

Defining terms

• Non-IID: means that the data held by each distributed node is of a very different character and an imbalance of 

data exists.

• Data imbalance: Due to variations in mobile phone usage among users, there is an imbalance in the amount of 

data collected.
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Related works

Paper Year Methods Limitation

Distributed training strategies for the structured perceptron [28] 2010
Averaging local training 

models
Data imbalance

Not considering non-IID
Parallel training of deep neural networks with natural gradient and parameter averaging [31] 2015

Information-theoretic lower bounds for distributed statistical estimation with communication 
constraints [45]

2013

Make distributed data 
communication more 

efficient

Data imbalance
Not considering non-IID

Few clients

Communication efficient distributed optimization using an approximate newton-type method [34] 2013

Trading computation for communication: Distributed stochastic dual coordinate ascent [40] 2013

Adding vs.  averaging in distributed primal-dual optimization [27] 2015

Communication-efficient distributed optimization of self-concordant empirical loss [43] 2015

Communication-efficient algorithms for statistical optimization [44] 2012

Global model averaging
Not considering non-IID

Performance issues
Communication complexity of distributed convex learning and optimization [3] 2015

Parallelized stochastic gradient descent [46] 2010
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2. The FedAvg. Algorithm

Stochastic Gradient Descent (SGD) performs the gradient calculation for one batch of clients 

(randomly selected) in one round.

• Use Large-batch because it doesn't cost much for a large number of clients

Baseline
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𝜂 : learning rate
𝑘 : number of clients
𝑛 : number of data samples
𝑤𝑡: current model weight



2. The FedAvg. Algorithm
FedAvg algorithm’s pseudo code
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2. The FedAvg. Algorithm
Demonstrate effectiveness

11

Learning about small datasets
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3. Experimental Results

Datasets

• MNIST (2NN and CNN)

• CIFAR-10 (2NN and CNN)

• The Complete Works of William Shakespeare (LSTM)

Experimental design

1. Impact of client participation rate 𝐶

2. Per-client Computation amount (Batch size and Epoch)

3. Evaluate FedSGD / FedAvg Algorithms Performance

Datasets and Experimental design
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3. Experimental Results

Impact of client participation rate 𝐶
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Set up the rest of the experiment with C=0.1

MNIST



3. Experimental Results
Per-client calculations(Batch size and Epoch)
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3. Experimental Results
Evaluate FedSGD / FedAvg Algorithms Performance
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CIFAR-10

The Complete Works of William Shakespeare
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5. Conclusion and future work
Conclusion

Conclusion

1. 적은 수의 통신으로 고성능 모델을 얻을 수 있음

2. 실용적인 알고리즘

Future work

1. 개인정보 보호를 

2. differential privacy나 secure multi-party computation등의 기술들을 적용
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5. Conclusion and future work
How to apply?
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How to apply?
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5. Conclusion and future work
How to apply?
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