

2024 SAIL Seminar

FL-FD: Federated learning-based fall detection with multimodal data fusion

Pian Qi, Diletta Chiaro, Francesco Piccialli^{*} Information fusion (2023.11)

순천향대학교 미래융합기술학과

Senseable Al Lab

석사과정 김병훈

2

Related works

Proposed framework

Evaluation experiment

Conclusion

Background (Multi-modal learning)

IoMT(Internet of Medical Things)

- Obtaining sensor information through wearables, cameras, and other devices
- A technology that offers many benefits to people's health and safety

Machine Learning(ML)

- Capture hidden relationships between data
- ML + IoMT : Provides support for disease prevention and diagnosis, Contributes significantly to medical advancement

<IoMT Example>

Background (Multi-modal learning)

Fall detection

- Falling can have serious results for vulnerable groups such as the elderly, children, and others
- It is important to detect and alert on falls
- Need to develop a fall detection system using ML + IoMT as above

<Fall detection system Example>

Background (Multi-modal learning)

Fall Detection System

- Rely on mostly single-modal data
- Single-modal data contains limited information
- Multi-modal data-driven systems help improve performance and can complement each other

Types of data fusion

- Input-level fusion
- Feature-level fusion
- Decision-level fusion (Ensemble)

<Data fusion Example>

Background (Federated learning)

Federated learning

- Centralized ML collects large amounts of user data on a central server to train models
- Privacy can be protected by using federated learning that does not share data

<Federated learning Example>

Contribution

Contribution

- 1. Proposed an input-level data fusion method to combine one-dimensional time series data and twodimensional visual data to achieve information complementarity
- 2. Proposed a FL framework that protects user privacy to ensure data security
- 3. Used benchmark dataset UP-Fall to measure efficiency, improving fall detection performance when compared to single-modal data

<Proposed Framework>

Data fusion in fall detection

Input-level Fusion

- Input-level fusion helps fully maintain information from different modalities of data and improve accuracy
- Previous work on fall detection, Input-level Fusion methods were based on single-modal data, which is limited by the heterogeneity of the data.

Data fusion in fall detection

Input-level Fusion with single-modal data

- Xie et al. [19] : Body skeleton + Face skeleton fusion
- Auvinet et al. [20] : Multi-camera view fusion

<Skeleton fusion framework>

<Multiple Cameras framework>

Multimodal considerations X

Data fusion in fall detection

Feature-level Fusion

- Yao et al. [25] : three NNs fusion
- Amsaprabhaaet et al. [26] : ST-GCN + 1D-CNN fusion

<Three NNs framework>

Multimodal considerations X

Fall-like behavior is classified as a fall

Data fusion in fall detection

Decision-level Fusion

- Data from different single modals is analyzed separately and then classification results are distinguished
- This approach is unable to utilize complementary information from different modal data

FL in fall detection

Fall detection using FL

- 1. Privacy-preserving federated learning based on multi-key homomorphic encryption (2022)
 - Contribution : Communication consumption efficiency, Protect privacy
 - Limitation : Not considering Non-IIDs, Single-modal data
- 2. Multimodal federated learning on IoT data (2022)
 - Contribution : Multimodal data processing
 - Limitation : Communication overhead

% Non-IID(Independent and Identically Distributed)

Summary table

Table 1

Literature summary table.

The following table reports the main findings of the reviewed literature relating data fusion and FL in fall detection.

Papers	Multimodal	Data fusion	FL	Contributions	Limitations
[19,20]	×	1	×	Input-level data fusion provides convenience subsequent fall detection tasks.	The data used for fusion have the same modality and the systems lack users' privacy protection.
[21,22,22–24]	J	1	×	Feature-level data fusion helps for improving the accuracy of fall detection.	The features are manually extracted, and how to choose depends on the experience of the researcher. Lack of users privacy protection.
[25,26]	×	1	×	Feature-level data fusion helps for improving the accuracy of fall detection.	The features used for fusion come from the same modality and the systems lack users' privacy protection.
[28]	1	1	×	Data Fusion at decision Level.	Lack of users' privacy protection.
[31–35]	×	×	~	The importance of protecting user privacy is considered, and FL is utilized to achieve the purpose.	The data used are single modality and could not provide complementary information.
[36]	✓	×	~	Representation of multimodal data is realized in FL, and user privacy is protected.	Data fusion was not achieved and could not provide complementary information.
Ours	1	1	1	Multimodal data fusion at the input level provides information complementation, and the FL-based system effectively protects users' privacy.	

Overview

Proposed Framework

- 1. Download the global model from the server
- 2. Client utilize data fusion module to combine multi-modal data
- 3. Upload local model parameters to the server
- 4. Aggregate the obtained local models and update the global model

Multimodal data fusion

Used Data Types

- 1. Sensor : One-dimensional time series data
- 2. Camera: Two-dimensional image data

Method for data fusion

- 1. Encoding sensor data into 2D images
- 2. Preprocessing RGB Images Using the Stacking Approach
- 3. Fusion of images into 3-channel data

Multimodal data fusion

Encoding of time series data

- GAF(Gramian Angular field)
 - Represent temporal correlations at each point in time
- 1. Normalization

$$\widetilde{X}_T = \{ ilde{x}_1, ilde{x}_2, \dots, ilde{x}_n \}$$

2. Converting spatial coordinate values to polar coordinate values

 $\begin{cases} \phi = \arccos(X_{norm,i}); \phi \in [0,\pi], \\ r = \frac{n}{L}; r \in \mathbb{R}^+, \end{cases}$

3. Represent temporal correlations as GAF

$$GAF = \begin{pmatrix} \cos(\phi_1 + \phi_1) & \cos(\phi_1 + \phi_2) & \cdots & \cos(\phi_1 + \phi_N) \\ \cos(\phi_2 + \phi_1) & \cos(\phi_2 + \phi_2) & \cdots & \cos(\phi_2 + \phi_N) \\ \vdots & \vdots & \ddots & \vdots \\ \cos(\phi_N + \phi_1) & \cos(\phi_N + \phi_2) & \cdots & \cos(\phi_N + \phi_N) \end{pmatrix}$$

GAF images of different signals in UP Fall dataset, (a) Ankle accelerometer, (b) Ankle angular velocity, (c) Belt accelerometer, (d) Belt angular velocity

Multimodal data fusion

Preprocessing RGB Images Using the Stacking Approach

- Data on falls includes both standing and lying images, so using a stacking approach to include temporal information
- 1. Obtain the neighboring frames
- 2. Calculate differences between neighboring frames
- 3. Convert to grayscale images

Multimodal data fusion

Fusion of images into 3-channel data

• Acceleration GAF + Angular velocity GAF + Gray scale Image

Federated learning deployment

FedAvg. Algorithm

- K: Number of communicating clients
- B: Local batch size
- E: Number of epochs

Algorithm 1: FedAvg algorithm.	
Require: $D = (X_F, Y)$: labeled local dataset; K: number of choose	d
clients; B: local batch size; η : learning rate.	
1: initialize w_0 at $t = 0$	
2: for each round <i>t</i> do	
3: $S_t \leftarrow$ randomly selected K clients	
4: for all client $k \in S_t$ do	
5: split <i>D</i> into batches of size <i>B</i>	
6: for each batch $b \in B$ do	
7: $w_{t+1}^k \leftarrow w_t - \eta \nabla \ell(w_t; b)$	
8: end for	
9: upload w_{t+1}^k to server	
10: end for	
11: Server executes: $w_{t+1} \leftarrow \sum_{k=1}^{K} \frac{1}{s} w_{t+1}^k$	
12: end for	

Datasets

UP-Fall dataset

1) Falling forward using hands

5) Falling sitting in empty chair

9) Picking up an object

6) Walking

10) Jumping

7) Standing

11) Laying

4) Falling sideways

8) Sitting

24

Experimental design

Scenarios setup

- 1. Binary Classification of Falls (Falls-Non-Falls)
- 2. Fall activity recognition

Input data

- TS + C1: Fusion data of time series(sensor) and camera 1
- TS + C2 : Fusion data of time series(sensor) and camera 2
- TS: Time series only
- C1: Camera 1 only
- C2: Camera 2 only

Proposed

Experimental design

Federated Learning setup

1. Round: 100(binary) / 200(action)

Model

CNN

Evaluation Metric

- Accuracy
- Precision
- Recall
- F1-score

Fall detection

Fig. 10. The accuracy curves of global model for fall detection.

Table 3							
Accuracy,	Precision,	Recall,	and	F1-score	for	fall	detection.

	Accuracy	Precision	Recall	F1
TS + C1	99.867 ± 0.049	99.840 ± 0.070	99.867 ± 0.071	99.854 ± 0.054
TS + C2	99.927 ± 0.041	99.841 ± 0.089	100.00 ± 0.000	99.920 ± 0.045
TS	95.880 ± 0.138	93.938 ± 0.313	97.279 ± 0.293	95.573 ± 0.147
C1	96.147 ± 0.225	94.496 ± 0.369	97.251 ± 0.297	95.847 ± 0.242
C2	97.561 ± 0.197	96.999 ± 0.385	97.706 ± 0.281	97.346 ± 0.210

Fall detection

Fall activity recognition

Fig. 12. The accuracy curves of global model for fall activity recognition.

abie

1

Accuracy, Precision, Recall, and F1-score for fall activity recognition.

	Accuracy	Precision	Recall	F1
TS + C1	89.769 ± 0.162	90.094 ± 0.155	89.769 ± 0.162	89.748 ± 0.162
TS + C2	84.097 ± 0.234	84.546 ± 0.253	84.097 ± 0.234	83.999 ± 0.249
TS	53.085 ± 0.255	52.938 ± 0.450	53.085 ± 0.255	52.286 ± 0.360
C1	70.439 ± 0.325	70.607 ± 0.318	70.439 ± 0.325	70.175 ± 0.329
C2	77.732 ± 0.415	77.777 ± 0.410	77.732 ± 0.415	77.416 ± 0.428

Fall activity recognition

F

S

AB

¥

A5

A

88

68

AIIAIO

0 0

- A6

True label

23

18

31 16

0

0

(a) TS + C1

(e) C2

Discussion

Multi-modal fusion

- Input-level data fusion can provide better classification results
- If building a model with single-modal data, it's better to use image data than sensor data

Federated learning

- Protected privacy
- Low accuracy for non-IID

5. Conclusion

Conclusion

Conclusion

- Proposed FL-based multimodal data fusion method for fall detection that protects the security of user information
- Not exposing user data
- Achieves higher accuracy than single-modal data through input-level data fusion

Future work

- Fusing more modalities of data
- Building Action Recognition based on federated multi-task learning for multiple purposes simultaneously
- Applied to other healthcare applications

How to apply?

How to apply?

- 1. Proposed an input-level data fusion method to combine one-dimensional time series data and twodimensional visual data to achieve information complementarity
- 2. Proposed a FL framework that protects user privacy to ensure data security
- 3. Used benchmark dataset UP-Fall to measure efficiency, improving fall detection performance when compared to single-modal data

