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1. Introduction

1.Perception Ability of Autonomous Vehicles: Vehicles
utilize sensors to perceive a broader range of information
than humans.

2.Importance of Trajectory Prediction: This enables
precise predictions of the intentions and future TP2 N et
trajectories of surrounding vehicles.

3.Challenges: The diversity of driving behaviors and the
complexity of contexts make trajectory prediction a
difficult task.

TP2Net (Temporal Pattern Attention-based Trajectory Prediction Network)
* Proposes a new model based on temporal pattern attention to extract hidden driving features.

VOI Inception
* Incorporates a method based on GooglLeNet to focus on interactions with surrounding vehicles.

Interpretability Issue
« Highlights the 'black box' problem of deep learning models and suggests an interpretation module to enhance the
model's reliability.




2. Related Research
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2.
A.

Related Research
Trajectory Prediction Methods

. Conventional Machine Learning Methods 2 Deep Learning Methods

Early vehicle trajectory predictions often utilized kinematic Recent studies have leveraged network structures like RNNs and

and dynamic parameters.

LSTMs for extracting hidden dependencies.

Models like the constant yaw rate and acceleration model, « Various approaches including LSTM encoder/decoder frameworks,
and Bayesian filters such as unscented and extended convolutional social pooling, and conditional variational auto-

Kalman filters were used.

encoders have been employed.

Models incorporating driving maneuver recognition were « Techniques like Multi-Agent Tensor Fusion (MATF) and Graph
proposed to enhance long-term prediction accuracy. Convolution Networks (GCN) have been used for modeling

interactions with surrounding vehicles.
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2. Related Research

B. Interpretation of Neural Networks

Instance Level Interpretation
« Suitable for explaining the activation features of specific neurons
causing a particular prediction.

Gradient-based Methods
 Calculate partial derivatives of each class relative to the input,
evaluating global feature importance.

Perturbation Methods
 Introduce noise to the original input and observe changes in the

hidden layer to measure feature importance.
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3. Development of the Proposed Model

A. Problem Formulation

Input
L ar Ihst (thSI = —Why.o., _2: _la 0)

historical trajectory data

The coordinate system's origin is set at the current position of the target vehicle,
with the x-axis aligned with the vehicle's longitudinal direction (parallel to the lane) and

the y-axis with its lateral direction (perpendicular to the lane)

VOI Inception

focusing on key vehicles around the target vehicle such as

the preceding, left preceding, right preceding, left alongside, right alongside, left following,
right following, and the following vehicle.

Additional Parameters

For each vehicle’s historical trajectory
a = [a",a a7 a

hst

[ 4 4 Lhst [ hst
ahSt — (x hSl‘,thl"vx 9Vy

! hst
) ax
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3. Development of the Proposed Model

A. Problem Formulation

Driving Maneuver Recognition

The current driving maneuver classes M;,,, and M,,; are defined to represent longitudinal

(normal driving (ND), hard braking (HB), and rapid acceleration (RA))
and lateral (lane following (LF), left lane change (LLC), and right lane change (RLC)) maneuvers, respectively.

The objective of this study

the target vehicle T Sredict >Z}Cm (ffm - 1, 2, Ce e Wf)

[ . 5 [
defined aﬁit - ('x fm? yﬂu‘)
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3. Development of the Proposed Model
B. Proposed Model

the proposed model is composed of four parts

Encoder Temporal Pattern Attention . R
- , Encoder, Decoder, TPA, and VOI inception
Ll'i('“‘l\:r —_ Embedding . -—\ v v ‘
Ha | s wHST  — i —R—
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" Encoder 3 — — K| 2
hd o || BB R '
ill;st'(lpd:r i 2 B N R e g J input coding
" L L 1l .l -
( ] ¢/ @ v
o ConvID |1 —‘m .
LST™ B Fed e - & —& output decoding
Encoder | ( ]
FLS:;I l T
ncoder b .
RvaR ; target vehicle
LSTM SR Polling — LSTM > ¢ g !
> Encoder —| Pooting || 8 [Reshape | Comeat Wl information
m o . [ 1 = »
Convixl . S ‘ 2 g S
LST™M o ] FC+ > LSTM &» 2 _.g g L
Encoder | - Coavind . an&max . ;,: *E g
Stack by : . .
e | g Position DRTEY bl Jen surrgundlng yehlcle
, : ' L LSTM 2> information
VOI-Inception Decoder

Fig. 1. Schematic diagram of the proposed TP2Net structure.
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3. Development of the Proposed Model
B. Proposed Model

1) Encoder

1. Purpose Definition
The encoder is primarily used to model the vehicle trajectory, including the vehicle's past
trajectory and driving maneuver patterns.

2. Processing Target and Surrounding Vehicles
Both target vehicle and surrounding vehicles (VOI) data are encoded. The VOI encoder shares
parameters, whereas the target vehicle encoder uses independent parameters.

Embedding Vector Creation
Each vehicle data @, € A and ar is transformed into an embedding vector

through a Fully Connected (FC) layer.
LSTM Processing Encoding Tensor Production

The embedding vector e, is fed into the LSTM network, 1. Linear Transformation

__l; Senseable Al Lab

Encoder

Encoder ™|

LSTM |
Encoder

L
LSTM |
Encoder

LST™M
Encoder
LST™M
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LSTM |
Encoder
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Encoder

LSTM |
Encoder

LSTM |
Encoder

and the hidden state vector h, produced by the last unit Converts the hidden state vector for the next layer's input.

of the LSTM represents hidden driving features.
2. LeakyRelLU Activation

e. = ¢ (ac; Wemp) (1) Applies non-linear transformation to address the dead neurons issue.

e = ¢ (LSTM (ec B3 Wenc) s Wiin) (2)

3. Final Encoding Tensor
The activated vector becomes the encoding tensor for further model processing.
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3. Development of the Proposed Model
B. Proposed Model

__D Senseable Al Lab
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1. Traditional Attention in Time Series Forecasting

« Focuses on selecting relevant time steps.
Suitable for tasks where each time step contains crucial
pieces of information.

2. Issue with MTS Prediction
« Traditional attention might introduce noise in multivariate
time series (MTS) prediction.

3. Introduction of TPA Mechanism

« Temporal Pattern Attention (TPA) uses a weighted sum of line vectors
across multiple time steps.
Captures broader temporal information, beyond individual time steps.

4. Advantages of TPA

« Enhances the ability to extract complex time patterns.
Improves prediction accuracy, particularly in tasks with intricate
temporal dynamics like trajectory prediction.

13
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3. Development of the Proposed Model
B. Proposed Model
3) VOI Inception
Encoding Challenge

L

l l 3 : When encoding the motion of surrounding vehicles, it is difficult to accurately
Conv3x3 ﬁ potin 2 _ plistm capture the spatial and positional features of the driving context.
Pooling 54 IR(‘\h| oneal '“‘ “' = >
Convixl .S ‘ - 4 E
c FC+ > LSTM = 2 —Z %
Stack b Convix] - M"fm\ z '.;.:,_: .
g Lon/Lat o VOI Inception Proposal
: ; Manewver /' | R STar 2, The proposal suggests stacking the encoded tensors of the
VOlI-Inception Decoder target vehicle and surrounding vehicles according to their spatial
positions to maintain the spatial information of all vehicles.
Inception Structure Decoder Structure Loss Function
N T
Due to the size limitation of Estk, three branches | The decoder concatenates the encoded Juse = —Zz |@n.; — an, a||
similar to the inception v1 module are adopted, | tensor of the target vehicle, TPA tensor, n=1 j=I
using various sizes of convolution kernels and | and VOI inception tensor, predicts the N o
max pooling to extract features. distribution of driving maneuvers, and lon —
forecasts the future position values of the JeE = __Z Z Pion 108(P!m1)

vehicle.

J — J!m?—FJh”—i—JME-E
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3. Development of the Proposed Model
C. Interpretation Module for TP2Net

During the training phase, noise is added to capture the changing patterns before the next training iteration.

Algorithm 1 Interpretation Module for TP2Net

1: Initialization: ¥ (-; Ww), X, 4. epochs, oj «— O Initialization

2: 6f <« var(¥ (X gr: W) . .

3: for idx<0 to |X g Variance Calculation
4: Initialization: Interpreter(-;W,) .

5: for ep«0 to epochs Dataset Iteration

6: a < Sigmoid(W ) e pe a

7. s e WXy W) Interpreter Initialization
S Miae = Xt % ~N0.5=aPD Epoch-wise Training
9: §F e Y ( Xy Wy)

=
—
[—

Update [oss based on Equation (29)

Gaussian Noise Generation and Application
I1:  Train the Interpreter(-;W,) (loss backpropagation)

12: end for Hidden State Calculation with Added Noise
13: o « Sigmoid(W)

14: 6; <0, Ug Loss Update

15:end for

Output: o Training the Interpreter

Gaussian Noise Variance Update

-

- v
a F(X); ~N(0,E;=a2F) — % "
Jo, =1 H il — K > log(;) Output
]|

as

J=1
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4. Experiments and Evaluations

A. Experimental Setting

- Datasets

Utilizes HighD (captured by drone at 25fps around
Cologne, Germany) and the public dataset NGSIM 1-80
(captured at 10fps in 2005).

+ System

Experiments conducted on a system equipped with an
Intel Core i7 CPU, NVIDIA GeForce GTX 1080Ti GPU,
16GB RAM, running on Ubuntu 16.04 LTS OS.

__E Senseable Al Lab

B. Training Setting and Evaluation Metrics

* Model Configuration
Employs 128 hidden layers for the LSTM encoder/decoder and 32
convolution kernels for the TPA.

« Optimization

Utilizes the Adam optimizer with a learning rate of 10~ (-4) and a
mini-batch size of 128, with learning rate scheduling for
performance improvement.

« Evaluation Metrics

Model performance evaluated using accuracy, precision, recall, F1-
score for driving behavior classification, and RMSE for trajectory
prediction accuracy.

N
RMSE = Z[(xn _-i'n)2+ (yn _&n)z]
n=1

1
N

17
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4. Experiments and Evaluations

C. Results and Comparison

Model Name Description of the model
Class variational Gaussian mixture models Uses variational Gaussian mixture models with a Markov random field to classify driving
(C-VGMMs) maneuvers and predict trajectories.
GAIL Extends the optimization of the Gated Recurrent Unit (GRU) to improve policy fidelity in driving
palicy predictions.
Social LSTM (S-LSTM) Employs a fully connected pooling LSTM structure to predict vehicle trajectories.
MATE Encodes the historical trajectories of multiple agents and scene context into a Generative

Adversarial Metwork (GAN) with adversarial loss.

Uses an LSTM structure that incorporates convolutional social pooling to encode surrounding

Convolutional social pnolmg ECS'LSTM] vehicles as social tensors and considers multi-modal driving maneuvers.

Utilizes a Sparse Graph Convolutional Metwork (GCN) based on sparse directed spatial graphs
SGCN fo model interactions between vehicles.

Employs an edge-enhanced graph convolutional neural network to reduce sensitivity to input
Scalable Network (SCALE-Net) data and improve prediction efficiency.

. L Uses parallel RNNs with a shared weight encoder to encode past and future interactions of an
Multiple futures prediction (MFP) agent and predict trajectories.

Applies mulii-head attention with an encoder/decoder to exiract deep features of the target

Multi-head attention social pooling (MHA) vehicle and surrounding vehicles, considering various input features such as speed,
acceleration, and vehicle class.

TP2Met The model proposed in this study
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4. Experiments and Evaluations

C. Results and Comparison
TABLE 1
RMSE OF EACH MODEL IN THE 5-s PREDICTION HORIZON

Prediction C-VGM GAIL S-LSTM MATF CS-LST SGCN SCALE-

Dataset MFP[45] MHA(3] TP2Net

horizon (s)  Ms|20] [31] [44] [32) M|28] 135] Net [34]
1 0.66 0.69 0.65 0.66 0.61 0.58 0.46 0.54 0.41 0.30
2 1.56 1.51 1.31 1.34 1.27 1.18 1.16 1.16 1.01 0.86
NGSIM 3 2.75 2.55 2.16 2.08 2.09 1.95 1.97 1.90 1.74 1.52
4 424 3.65 3.25 2.97 3.10 3.03 2.91 2.78 2.67 2.36
5 5.99 4.71 4.55 4.13 437 4.04 - 3.83 3.83 3.37
1 - - 0.22 - 0.22 0.15 - - 0.06 0.05
2 0.62 - 0.61 0.38 - - 0.09 0.07
HighD 3 1.27 - 1.24 0.72 - - 0.24 0.19
4 2.15 - 2.10 1.16 - - 0.59 0.49
5 341 - 3.27 1.71 - - 1.18 0.98

« RMSE Comparison

RMSE values of various models are compared in Table |, with results from studies not using the HighD dataset not
provided.

+ Data Accuracy
The HighD dataset showed lower RMSE than NGSIM, indicating higher accuracy and fewer errors.

* Impact Factors
Incorrect labeling negatively impacts network predictions.

» Prediction Accuracy
Short-term predictions show small errors, while long-term predictions highlight the importance of recognizing driving
intentions due to larger errors.

« Model Performance

The proposed model demonstrates superior performance in both short-term and long-term predictions, offering a 15%
accuracy improvement over the MHA model. —
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4. Experiments and Evaluations

C. Results and Comparison oL .
Prediction instances of HighD dataset

» Vehicle Representation
Blue boxes represent cars, and orange boxes
represent trucks.

7 S _—_—_—_-—_m..————-———--l D9~ 1D69: -
= T —
-|D704 69

: « Driving Direction
0 == 1he direction of the vehicle is indicated by a
- ' triangle inside the box.

« Trajectory Information
» Light-colored dotted line: Actual vehicle
trajectory (Ground Truth)
» Dark-colored solid line: Trajectory
predicted by the model

« Driving Pattern
e (a), (b), (e): Vehicles drive from left to
right
* (¢, (d): Vehicles drive from right to left
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4. Experiments and Evaluations

C. Results and Comparison

Model Prediction Instances
Various vehicle driving maneuvers and their prediction instances
are presented.

10703 . Prediction Accuracy
e — : The model shows good prediction performance for most driving
— maneuvers in the validation set.

Case of Prediction Error
There's an instance where a significant prediction error occurred
during a lane-changing maneuver.

Specific Vehicle Prediction Failure
The network failed to predict the lane-changing maneuver of
vehicle ID 738.

Cause of Prediction Failure
The presence of a vehicle (ID 739) on the left-front led the network
to predict straight driving instead of a lane change.

Decrease in Prediction Accuracy
The prediction accuracy of TP2Net decreased when the actual lane
change occurred.

Future Research Direction
Strategies for performance improvement in such scenarios are
suggested as topics for future research.
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4. Experiments and Evaluations

D. Prediction Error of Each Driving Maneuver

TABLE I
CLASSIFICATION PERFORMANCE OF EACH DRIVING MANEUVER

Lateral accuracy: 99.22% Precision Recall  Fl-score
Longitudinal accuracy: 99.10% (%a) (o) (o)
LF 949,60 049 5% U959
LLC 92.05 91.61 01,83
RLC 95.09 95713 9541
ND 99.40 99.68 04,54
HBE B35 64 RO.16 8281
EA 8455 71.90 77.71

+ lane following (LF)
+ left lane change (LLC)
* right lane change (RLC)

* normal driving (ND)
* hard braking (HB)
+ rapid acceleration (RA)

« Lateral Maneuvers

The classification results for lateral driving maneuvers (e.g., lane changes) were
generally satisfactory. However, the F1-scores for left lane change (LLC) and right
lane change (RLC) were lower compared to left turn (LF)

« Classification Errors

In certain scenarios, such as the driving maneuver of the target vehicle in the next
3-4 seconds, there were often incorrect classifications. Solutions to this issue will be
explored in future work.

« Longitudinal Maneuvers

The prediction accuracy for longitudinal driving maneuvers (e.g., acceleration or
deceleration) was relatively low, possibly due to the unclear classification boundaries
between different longitudinal maneuvers.
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4. Experiments and Evaluations

D. Prediction Error of Each Driving Maneuver

« Prediction Error Increase
Lateral driving maneuvers increased both longitudinal and lateral prediction
errors, with a higher proportion of longitudinal prediction errors.

TABLE III
EMSE oF EACH DRIVING MANEUVER IN THE 5-5 PREDICTION HORIZON

Prediction LF LLC RLC . .
Horizon{s) Lon Lat Lon Lat Lon Lat * Comparatlve AnaIySIS

1 005 001 020 003 007 003 The proposed model was not as accurate as MHA in terms of longitudinal
A ? 007 002 032 007 012 006 errors (especially for LF) and short—.term lateral maneuver errors, but showed
-131 3 022 006 042 019 034 018 significantly reduced errors otherwise.

4 054 0.14 088 045 079 043

5 110 022 1.74 078 143 076 ° Long_term Prediction Performance

‘ M 02 008 LT BB6 0.0 TP2Net is indicated to better predict the trajectory in the long-term

2 b6 00 Wiz 010 Al 008 prediction horizon based on the extracted hidden features.
TP2Net 3 0.17 008 027 017 021 0.14

4 0.44 018 0.66 041 052 0.34 o ]

5 0.88 030 130 063 104 054 * Specific Error Comparison

The prediction error for LLC in longitudinal maneuvers was significantly larger
than that for RLC in lateral maneuvers, likely due to more active lane changes
and greater speed variance associated with LLC.

« Lateral Error Analysis

The lateral error associated with LF was smaller than that associated with
either LLC or RLC.
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4. Experiments and Evaluations

TABLE IV
RMSE 0F EACH COMPARISON AND ABLATION MODEL IN THE 5-SECOND PREDICTION HORIZON

E. Comparison and Ablation Experiment

. ... o Prediction Less . . , Simple — TP2Net
Experiment Condition Description Horizon(s)  feaure  OPWM No fiy No I, No h, VOI MHA GCN ® "
1 0,181 0,093 0.071 0.051] 0.063 0.049 0.045 0.044 0.043
Less feature Only the x and y coordinates of the target and 2 0.511 0.133 0,100 0.072 0,090 0.070 0,065 0.067 0.063
surrounding vehicles were used as input. Longitudinal 3 1.055 0.264 0.209 0199 0218 0.177 0. 185 0184 0,177
4 1.760 0.682 0.510 05046 0.563 0.454 0476 0.486 0.453
oniv hT Predictions were based solely on the target vehicle's 5 2.645 1.377 1.028 1.022 1.164 0.943 0,973 0.987 0.930
y encoded tensor hT. l (.133 0.075 0.049 0.052 0.027 0.029 0.053 .034 0.023
2 (.255 0.097 0.059 0.057 0.043 0.044 0,090 0,043 0.037
No hT The target vehicle's encoded tensor hT was removed Lateral 3 0367 0.159 0,100 0.099 0.092 0.087 0,144 0.081 0.082
from the model. 4 (1480 (1.284 0.193 02006 0,196 0,189 0,240 0177 (.185
5 (.562 (0.435 0.310 0335 0.326 0.317 0.345 0.298 0.310
No ht The TPA output tensor ht was removed from the
del. .
moce « Importance of Basic Inputs
No hA The VOI inception tensor hA was removed from the Using only the position information of the target vehicle significantly reduced
TIlEl prediction accuracy, suggesting the need for additional kinematic features.
Si le VO Replaced VOI inception using 1 x1and 3x 3
impie convolution kernels to convolve the stacking tensor
Estk * Interplay between TPA and hT
MHA Replaced the TPA mechanism with the MHA Removing hT reduced lateral errors, while removing ht reduced longitudinal errors,
mechanism. indicating that the two tensors complement each other.
GCN Used a graph convolutional neural network to model

the interactions among surrounding vehicles.

* Interaction with Surrounding Vehicles
Lack of interaction information with surrounding vehicles increased errors, with VOI

The model proposed in this study . . . .
TP2Net inception improving accuracy.

e« Performance of TPA and GCN

TPA outperformed MHA, showing effectiveness in extracting hidden driving features.
GCN was useful for lateral predictions but didn't match TP2Net's performance in
longitudinal predictions.

24
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4. Experiments and Evaluations

F. Output Explanation of TPA
Unique pattern

TPA output tensor

e

Representative
Driving Maneuver
" Analysis
€ Hu&:ll::ﬁfu;::on A Driving Pattern "Driving intention - Lane changing maneuver - Vehicle motion™

Noise inclusion

Training for 5000
epochs

640 LLC and RLC

Statistical
Significance

. Training and
L e 00— Nom'laligation A 4
Important Time Step e
Analysis

& ~
Relative importance
statistical
TPA output tensor significance
response

Noise impact

) reduction
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4. Experiments and Evaluations
. Response Peaks

F. Output Explanation of TPA The analysis identified moments with clear response peaks in at least two
subfigures.

the normalized relative influence between

the TPA output tensor and each time step in the LLC condition +  First Stage (Red Circle)

Between -4.8 s and -5.8 s, this period is interpreted as the potential
intention to change lanes by the driver.

0 O |1|<- Lo O | |;|'D
05 O 09 O O . Second Stage (Blue Circle)
o0 o1 oM : N o8 Between -2.2 s to -2.0 s and -3.0 s to -2.8 s, this period is interpreted as
3% —::., j’ % the stage where the driver begins to turn the steering wheel.
Z_:;j._.« E‘ N %1:.\ %-‘.l.\ . .
Sos 2 S04 T +  Third Stage (Green Circle)
=03 =03 =03 =03 At 0 s and between -0.6 s to -0.4 s, this period is interpreted as the
7 . . = stage where the vehicle crosses the lane line.
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4. Experiments and Evaluations
F. Output Explanation of TPA

L
10 0 10 1o
=07 = = =07
s s v s
2os 2 205 e
2 2 o o
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s 1=y =Y S
0.2 D2 )
1 0l 0.1
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# ¥ a . “0 PRFEEL FUEUTTS 2 Y, L B Veig7. ,V."
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(a) -5s (b) -4s (c)-3s (d)-2s
©) w1 Q) Q o @
94 094 09 09 Y/
08 ns Q s
=%} 202 =1
26 0.6 -]
® o o
205 205 20
Snad S04 20
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(e)-1s () 0s (g)1s (h) 2s

« First Stage (Red Circle)
-4.6 s and -5.4 s represent moments that may indicate an intention to change lanes,
suggesting the preparation phase for lane changing.

« Second Stage (Blue Circle)
The period between -2.6 s and -2.4 s marks the beginning of the steering wheel
turn by the driver, indicating the execution phase of the lane-changing maneuver.

« Third Stage (Green Circle)
The moments between -0.2 s and 0 s represent the vehicle actually crossing the
lane line, indicating the completion phase of the lane change.
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Analyzes high response values for 320 trajectories in LLC and RLC
maneuvers.

Values closer to 0 have a greater impact on prediction.

Mean values are determined by a sliding window and recorded at
peak response counts.

LLC and RLC show similar distributions of high responses, suggesting
around 4 key time steps within 3 seconds before lane changes.

TPA demonstrates its ability to stably extract important time steps

related to hidden driving features, even after using Gaussian noise.
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5. Conclusion

* TP2Net and TPA

TP2Net integrates TPA, which uses Gaussian noise to
quantitatively assess changes in input and hidden tensors,
highlighting the significance of specific dimensions.

« Identification of Key Stages

Analyzing 10 seconds around a lane change at 1-second intervals
revealed three critical stages. The model detects the driver's lane-
change intent approximately between -4.5 to -6.0 seconds.

« Efficiency of TPA

TPA adeptly captures the pattern of driving intention, maneuver,
and vehicle motion, extracting hidden driving features for
trajectory prediction.

_l) Senseable Al Lab

« Ablation Study Outcomes

The results confirm that TPA precisely extracts lateral maneuvers of
the target vehicle, and encoding of the target vehicle compensates for
significant longitudinal errors, showcasing their complementary nature.

* Interaction and Accuracy
Extracting interactions between the target and surrounding vehicles
on a multi-scale significantly enhances prediction accuracy.

« Prediction Performance

The proposed model boosts prediction accuracy in real-world
scenarios, benefiting from faster inference and reduced computational
demands.

* Future Research Directions

Addressing the limitation of predicting only one vehicle at a time and
the decline in accuracy for certain maneuvers in the next 4 to 5
seconds will be the focus of future research. It will also involve
considering more surrounding vehicles and enabling the network to
select vehicles of interest through end-to-end learning.
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6. How to apply

Data Preprocessing Online Learning

/ Multi-Head Self-Attention TCN

Fully Connected Layer

TemporalConvNet Temporal Attention Block

Teacher forcing
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‘_}_ Input  1DComw  1DConw  Pool Layer
commie
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Residual Connection
Hyperparameter Tuning

with Bayesian Optimization
(Optuna)

Gaussian noise
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