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A B S T R A C T   

Accurately detecting and predicting Lane Change (LC) processes of human-driven vehicles can 
help autonomous vehicles better understand their surrounding environment, recognize potential 
safety hazards, and improve traffic safety. This paper focuses on LC processes, first developing a 
Temporal Convolutional Network (TCN) with an attention mechanism (ATM) model to recognize 
LC intention. Then, considering the intrinsic relationship among output variables, the Multi-Task 
Learning (MTL) framework is employed to simultaneously predict multiple LC vehicle status 
indicators. Furthermore, a unified modeling framework for LC intention recognition and driving 
status prediction (LC-IR-SP) is developed. The results indicate that the classification accuracy of 
LC intention was improved from 95.83% to 98.20% when incorporating the ATM into the TCN 
model. For LC vehicle status prediction issues, Pearson’s correlation coefficient indicates that 
metrics extracted from LC processes show stronger correlation than those extracted from Lane- 
keeping processes. Consequently, three multi-tasking learning models are constructed based on 
the MTL framework. The results indicate that the MTL with Long Short-Term Memory (MTL- 
LSTM) model outperforms the MTL with TCN (MTL-TCN) and MTL with TCN-ATM (MTL-TCN- 
ATM) models. Compared to the corresponding single-task model, the MTL-LSTM model demon-
strates an average decrease of 26.04% in MAE and 25.19% in RMSE. The LC-IR-SP model 
developed holds great potential in enhancing autonomous vehicles’ perception and prediction 
capabilities, such as identifying LC behaviors, calculating real-time traffic conflict indices, and 
improving vehicle control strategies.   

1. Introduction 

It can be expected that, for an extended period of time, vehicles with varying levels of automation will coexist on the roads [2,5]. 
During the transition period, assisting intelligent driving vehicles to understand and predict changes in the behavior of human-driven 
vehicles is particularly critical for driving decisions. LC is a common driving behavior that leads to two-dimensional spatial (longi-
tudinal and lateral) interaction between vehicles. The LC process consists of a series of continuous, complex maneuvering actions that 
significantly impact road traffic efficiency and safety [10,11]; [28]; [83]. Accurately identifying and predicting lane change processes 
can help intelligent driving vehicles anticipate potential safety risks and execute appropriate response strategies. 
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The LC behavior is a time-varying, continuous maneuvering process [1,65]. LC intention recognition has been a challenging 
problem in traffic engineering since it is hard to observe directly. There are two types of information that are typically utilized to 
identify LC intentions: vehicle dynamics indicators and driver characteristic indicators. Vehicle dynamics indicators include steering 
wheel angle, steering velocity, lateral velocity, turn signal, and brake pedal position [26,36,41,44]. In addition to the difficulty of 
obtaining certain information directly from human-driven vehicles (e.g., steering wheel angle, steering velocity, etc.), the reliability of 
the data obtained is also difficult to guarantee. For example, turn signal usage is reported to be between 44% and 40% in the US and 
China, respectively [41,61]. The driver characteristic indicators consist of head movement, eye movement, body gestures, and even 
electroencephalography [16]; [21]; [27]; [49]; [50]; [52]; [55]; [73]. Such information can only be gathered through sensors or 
driving simulation experiments. Inevitably, experimental settings constrain these investigations, such as potential concerns with low 
data quality, high cost, and small sample size, making it difficult to generalize and apply the research findings. 

With the advancement of technology, traffic system monitors and road users can obtain massive, real-time, individualized, and 
high-precision vehicle trajectory data. Lane change trajectory prediction has attracted a lot of attention over the past few years [32, 
53]; [78]. However, vehicle status indicators are more frequently utilized than vehicle trajectory information in practical engineering 
applications, such as real-time risk assessment, driving decisions, and vehicle control [30]; [59]; [84]. The research on driving status 
prediction can be classified into two categories: speed prediction [6,82,88,89] and steering angle prediction [22]; [29]; [33]. Previous 
modeling frameworks have required separate prediction models for each metric to predict the driving status, resulting in significant 
training time and potential conflicts between the prediction results of different metrics. In fact, these driving status indicators are 
interrelated, especially for vehicles performing lane-changing behavior [9,80]. Considering the correlation among indicators, 
developing a multi-task prediction model to predict multiple indicators simultaneously is necessary to reduce model training time and 
improve prediction performance [60]. 

To our knowledge, no study has been conducted specifically to focus on LC vehicle status indicator prediction. In this paper, the 
vehicle status was characterized using six variables, including the longitudinal velocity (vx), lateral velocity (vy), longitudinal accel-
eration (ax), lateral acceleration (ay), vehicle heading (θ), and yawRate (Δθ). This paper, using vehicle trajectory data, aims to build a 
unified approach to LC intention recognition (LC-IR) and LC vehicle status prediction (LC-SP). The contribution of this paper is 
threefold.  

• Firstly, a new unified modeling framework for Lane Change Intention Recognition and Status Prediction based on vehicle trajectory 
data is proposed. A new vehicle trajectory dataset (CitySim Dataset) is employed to develop the LC-IR-SP model. As far as we know, 
this is the first study to combine lane change intention recognition and status prediction.  

• Secondly, to effectively capture crucial temporal features, this study integrates the attention mechanism into TCN networks, 
resulting in developing a novel TCN-ATM model specifically designed for LC intention recognition. The incorporation of the 
attention mechanism enhances the model’s capacity to selectively focus on and extract pertinent temporal information.  

• Thirdly, considering the inherent interdependencies among outcome variables, this study constructs three multi-task learning 
models (MTL-LSTM, MTL-TCN, MTL-TCN-ATM) for predicting driving status variables. To our knowledge, no studies simulta-
neously considered the intrinsic relationship between outcome factors to predict driving status indicators. 

The rest of this paper is structured as follows. Section 2 presents a brief literature review. The data collection and post-processing 
are described in Section 3. In Section 4, a new unified modeling framework for Lane Change Intention Recognition and Status Pre-
diction is proposed. The experimental results and discussion are included in Section 5. Section 6 draws out the conclusions of this 
study. 

Table 1 
A summary of the representative research for LC intention recognition.  

Study Data Method Number of Samples Advance time Accuracy (%) 

([77] Image CNN 637 – 73.97 
([31] Image GoogleNet & LSTM 714 3.76 s 74.46 
([45] Vision-cloud -− 2(Pts） – 79.2 
([25] Simulator AT-BiLSTM -− 2(5Pts） 3 s 93.33 
([26] BN –(1 Pt) – 95.4 
([92] Naturalistic HMM –(58 Pts) – 83.22 
([36] SVM 139(6 Pts) 1.3 80 
([73] EBiLSTM 201(3 Pts） 0.5 s 96.1 
([41] HMM 642(50 Pts) 0.5 s 90.3 
([20] LSTM 814(6 Pts) – 88.26 
([17] RVM 903(8 Pts) 3 s 88.51 
([91] Trajectory NN Above 1000 – 73.33 
([72] LSTM — 2.5 s 92.40 
([51] Logit Above 1000 – 66.41 
([66] LSTM Above 1000 2 s 86.21 
([76] HMM 3410 6 s 94.4 
([1] Extra trees classifier Above 1000 2 s 82 
([32] SVM 351 3 s 85 

Notes: –represents Not reported; Pt represent the participants 
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2. Related research 

There are three kinds of methods, including dynamic or kinematic models [34]; [37]; [40]; [56]; [63]; [71]; [74], statistical models 
[26,36,49,51,54,70], machine learning methods [8,13,20,31]; [35]; [42]; [48], have been widely used for the LC intention recog-
nition. The method based on dynamic or kinematic models detects the vehicle’s motion by considering the kinematic relationship 
among parameters (e.g., position, velocity, acceleration) and the different forces (the longitudinal and lateral tire forces or the road 
banking angle) that affect the vehicle motions. As classical statistical methods, multinomial logit models and Bayesian theory are 
utilized to predict the lane change probability. To capture the inherent characteristics of time series, three machine learning methods, 
including Hidden Markov Model (HMM), Support Vector Machines (SVM), and LSTM, have been widely used. The commonly used 
models and their performance are listed in Table 1. 

The summary of the literature in Table 1 reveals several valuable conclusions. First, vision-based LC behavior recognition methods 
exhibit lower classification accuracy than other methods. Second, because simulators and natural experiments are limited by the small 
number of experimental participants and high data homogeneity, ensuring the model’s generalizability is challenging. Third, machine 
learning-based models have better classification accuracy compared to statistics-based models. Fourth, the LSTM model is widely used 
for lane change intention recognition and has made great progress in improving the accuracy of the LC behavior recognition but still 
has excellent potential to improve classification accuracy. 

The LSTM approach has two limitations: the gradient vanishing problem and the inability to perform parallel computation [64]. To 
overcome the above two constraints, the TCN, first proposed by [3], has attracted considerable interest. TCN is designed for processing 
sequential data, such as time series or natural language [24,39,43]. With dilated causal convolution layers, the TCN effectively 
captures long-term dependencies over multiple time scales in the input sequences. Following that, the TCN has achieved significant 
promotion in both regression and classification tasks, involving forecasting carbon prices [39], predicting wind speed [18]; [38], and 
diagnosing power converter faults [81]. 

Although vehicle status indicators can be extracted from the predicted trajectories, the method is restricted by error accumulation 
and lags in trajectory prediction results. Changes in vehicle velocity and driving direction will cause changes in vehicle trajectory. 
Extracting status indicators from predicted vehicle trajectories necessitates an extended prediction time of vehicle trajectories. 
Research reported that minor positioning errors might significantly affect extraction indicators [23]. Hence, building independent 
prediction models for driving status indicators is essential to improve predictive performance. The dilemma encountered by traditional 
end-to-end models is that to predict multiple indicators, a given model may be repeatedly trained to predict different indicators with 
the same input parameters, leading to computational redundancy and higher costs. To address this issue, the MTL framework was 
proposed first by Rich Caruana [7] and involved training a model to learn multiple related tasks simultaneously. As a promising area in 
machine learning, MTL aims to improve the performance of multiple related learning tasks by leveraging useful information among 
them [87]. The tasks can be supervised, semi-supervised, or unsupervised, and the model is designed to take advantage of shared 
representations across the various tasks to improve performance. Deng et al. [14] employed the MTL framework for traffic prediction, 
achieving up to 18% and 30% improvement in short- and long-term predictions. Xu et al. [75], Zhang et al. [86], and Gao et al. [19,75, 
86] demonstrate the effectiveness of the MTL structure in travel time prediction areas. However, the ascendancy of MTL in driving 
status has not been tested. To fill the gap, this paper considers the MTL framework for LC-driving status prediction. 

3. Data 

The publicly available CitySim dataset [90] is used in this research. The CitySim dataset is a drone-based vehicle trajectory dataset 
extracted from 12 locations with a sampling frequency of 30 Hz. Notably, the dataset supplies the vehicle center, head, tail, and 
bounding box vertices locations, thereby enabling an intricate assessment of their movements. With six lanes in two directions, a 
sub-dataset Freeway-B collected in Asia [15,90] is chosen to verify the performance of our proposed model. A snapshot of the 
freeway-B segment is shown in Fig. 1. 

The freeway-B dataset is collected simultaneously with two UAVs over a 2230-ft basic freeway segment. Totally 5623 vehicle 
trajectories are extracted from 60 min of drone videos. This study focuses on lane change processes. After data processing (explained in 
more detail in the next section), a total number of 1023 vehicle trajectories are extracted ultimately from the freeway-B dataset, 
including 545 lane-change (LC) vehicle trajectories (240 left lane change (LLC) vehicle trajectories and 305 right lane change (RLC) 

Fig. 1. A snapshot of the freeway-B segment.  
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vehicle trajectories) and 478 lane-keeping (LK) vehicle trajectories. Lane-keeping vehicle trajectories are randomly extracted. 

3.1. Data processing 

Four significant steps are further employed for data processing with extracted vehicle trajectory data.  

(1) Removing abnormal data. The freeway-B dataset is collected from two stitched drone videos. The vehicle trajectory with the 
difference of adjacent frames greater than one is removed to avoid the effects of frame misalignment or skipping.  

(2) Data smoothing. Minor positioning errors might significantly affect extraction indicators [23]. To reduce the negative effect of 
errors, a moving average (MA) method is used to smooth the trajectory, and the moving average filter is set to 0.5 s. A com-
parison of the original trajectory and processed trajectory is shown in Fig. 2.  

(3) Indicator calculation. To accurately describe the vehicle driving status, six indicators are extracted from the two-dimensional (i. 
e. longitudinal and lateral) vehicle position coordinates, including the longitudinal velocity (vx), lateral velocity (vy), longi-
tudinal acceleration(ax), lateral acceleration (ay), vehicle heading (θ), and yawRate (Δθ). Furthermore, a non-linear low-pass 
filter is employed to reduce the negative effect of measurement errors [12]. First, the vehicle speed at the t-th frame is calculated 
and can be formulated as. 

vn(t) =
s(t + n) − s(t − n)

2 · nT
(1)  

Where t represents the current frame, T is a constant, representing 1/30 s in this research, n represents the time-step; s(t − n)
represents the vehicle’s position in the frame t − n,where n takes different values, a vector {v1(t), v2(t), ..., vN(t) } (In this 
paper, n is set to 8) will be obtained. Thus, the vehicle velocity v(t) at the t-th frame is calculated by taking the median of all N 
time steps. The lateral velocity (vy) and longitudinal velocity (vx) can be determined based on the change in the lateral and 
longitudinal positions of the vehicle, respectively. With the calculated velocity, acceleration can be obtained as. 

a(t) =
v(t + 1) − v(t − 1)

2 · T
(2)  

The lateral acceleration (ay) and longitudinal acceleration (ax) also can be determined based on the change of vy and vx, 
respectively. In addition, the vehicle heading can be calculated as, 

θn(t) = arctan
(

yH(t + n) − yR(t − n)
xH(t + n) − xR(t − n)

)

(3)  

Where θn(t)represents the vehicle heading at the frame t,yH(t+n) is the vehicle head point longitudinal position in the frame t +
n, xR(t+n) denotes vehicle tail point horizontal position in frame t + n. yawRate is used to represent the rate of change of 
the vehicle’s steering wheel angle [30]. It is calculated as, 

Δθ(t) =
θ(t + 1) − θ(t − 1)

2T
(4)  

Fig. 2. Comparison of original trajectory and processed trajectory.  
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(4) Normalization. Variations in magnitude and units among different metrics can have an impact on the outcomes of data analysis. 
To mitigate this issue, it is necessary to standardize all the indicators. 

x′ = x − min(x)
max(x) − min(x)

(5)  

3.2. Input indicator 

The vehicle status is influenced by other vehicles in the driving environment [85]. To fully consider the impact of various factors, 
the input of the combined model consists of three parts: ego vehicle (E-vehicle) information, surrounding vehicle information, and 
relative position information. Surrounding vehicles include the closest preceding and following vehicles in the adjacent and the current 
lanes. The ego vehicle is the human-driven vehicle. This research aims to detect and predict the human-driven vehicle LC process. The 
six indicators (vx, vy, ax, ay, θ, Δθ) were calculated for each vehicle. Limited by the video coverage, some trajectory fragments of 
surrounding vehicles were not recorded. A categorical variable (0 means it has recorded trajectory information; 1 means the trajectory 
information is missing) is added to each surrounding vehicle indicating this phenomenon. For instance, when the ego vehicle first 
appeared, the following vehicle (F-vehicle) was not yet in the drone videos. The following vehicle status variable (F-val) is set to 1. 
Relative position information (dw) is the headway distance between the E-vehicle and other vehicles, as shown in Fig. 3. If the cor-
responding vehicle is not recorded in drone video, the corresponding dw is set to 0. Ultimately, a total of 54 indicators are taken as 
input variables. More details can be obtained from Table 2. 

4. Method 

In this section, this paper first proposes a new modeling framework for Lane Change Intention Recognition and vehicle Status 
Prediction. Then, by incorporating an attention mechanism, a new novel TCN-ATM model is proposed. Furthermore, based on the MTL 
framework, several multitask learning models, MTL-TCN-ATM, MTL-TCN, and MTL-LSTM, are developed to predict LC vehicle status. 
Finally, the commonly used evaluation metrics are presented. 

4.1. Modeling framework 

Fig. 4 presents the framework of the proposed LC-IR -SP model, which consists of two core modules: the LC-IR module and the LC- 
SP module. The LC-IR module is a classification model used to recognize whether the vehicle produces LLC intention or RLC intention. 
When the LC-IR module detects that a vehicle generates a lane change intention, the LC-SP module will predict the LC vehicle driving 
status. The LC-SP module consists of separate multi-task learning and single-task learning models for sequence-to-sequence prediction. 
Multi-task learning models are employed to predict related variables. Unrelated variables were predicted separately using a single-task 
model.  

(1) LC-IR module.LC intention is divided into three categories: lane keeping (LK), left lane changing (LLC), and right lane changing 
(RLC). The generation of LC intention is a complex process, and it is influenced by other vehicles in the driving environment [25, 
49]. As mentioned above, there are 54 indicators used as input variables in this research. Lane Change Intention Recognition 
can be conceptualized as a classification issue based on multivariate time-series data. The function of the LC-IR module is 
defined as, 

Lt = φ(ℓ · St− Δt:t) (6)  

The output Lt represents the LC intention of the ego vehicle at time t, which is labeled as 1, 2, and 3 for LK, RLC, and 

Fig. 3. The headway distance between the E-vehicle and surrounding vehicles.  
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LLC;St− Δt:t =
{
vx, vy,…,Δθ

}

t− Δt:trepresents the input variables described in Section III, the notation t − Δt : t denotes a 
time-series of the indicator from time t − Δt to time t; l denotes the parameter vector; φ() represents the mapping 
relationships.  

(2) LC-SP module. The driving status is represented by six indicators: vx, vy, ax, ay, θ, and Δθ. Velocity (vx, vy) and heading (θ) can be 
regarded as macroscopic indicators that reflect the aggregated effects of prior driving behavior. Meanwhile, acceleration (ax, ay) 
and yawRate (Δθ), used as microscopic indicators, indicate the driving behavior that the driver is about to perform, reflecting 
changes in the throttle, brake pedal, and steering angle of the vehicle, respectively. Predicting LC vehicle driving status requires 
the simultaneous prediction of these six indicators (vx, vy, ax, ay, θ, and Δθ). 

The LC process usually lasts for several seconds. With a 1 s interval (indicators take an average of 60 frames), lane-change vehicle 
status in the next 2 s is predicted in this study. For instance, taking the longitudinal velocity (vx) and the lateral velocity (vy) as an 
example, the function of the LC-SP module is defined as, 

(
vy,t+1, vy,t+2

)
= g1(ξ1 ·Rt− Δt:t)(

vx,t+1, vx,t+2
)
= g2(ξ2 ·Rt− Δt:t)

(7)  

Where vx,t+1, vx,t+2 represent the longitudinal speed of the ego vehicle at time t + 1 and time t + 2, respectively; vy,t+1, vy,t+2 represent 
the lateral speed of the ego vehicle at time t + 1 and time t + 2, respectively. Compared with (6), the input Rt− Δt:thas an additional 
variable L(t − Δt : t),which denotes the LC intention from time t − Δt to time t. g1() and g2() represent the mapping relationships. ξ1 and 
ξ2 denote the parameter vector. The expected six output variables (vx, vy, ax, ay, θ, Δθ) are simultaneously influenced by the same 
surrounding environment. By intelligently leveraging the inherent relationships between variables, it becomes possible to enhance 
prediction accuracy effectively. 

4.2. Temporal convolutional networks 

TCN consists of causal convolution and dilated convolution [3,24]. Causal convolutions are used to ensure the temporal 

Table 2 
Input indicators of the model.  

Inputs Variable Variable descriptions 

E-, P-, F-, LP-, LF-, RP-, RF-vx The longitudinal velocity of E-vehicle and surrounding vehicle (ft/ sec) 
E-, P-, F-, LP-, LF-, RP-, RF-vy The lateral velocity of E-vehicle and surrounding vehicle (ft/ sec) 
E-, P-, F-, LP-, LF-, RP-, RF-ax The longitudinal acceleration of E-vehicle and surrounding vehicle (ft/ sec2) 
E-, P-, F-, LP-, LF-, RP-, RF-ay The lateral acceleration of E-vehicle and surrounding vehicle (ft/ sec2) 
E-, P-, F-, LP-, LF -, RP-, RF-θ The heading of E-vehicle and surrounding vehicle (degree) 
E-, P-, F-, LP-, LF -, RP-, RF-Δθ The yawRate of E-vehicle and surrounding vehicle (degrees/sec) 
dw0, dw1, dw2, dw3, dw4, dw5 Space headway between E-vehicle and surrounding vehicle (ft) 
P-, F-, LP-, LF -, RP-, RF-val 0 means it has recorded trajectory information; 1 means the trajectory information is missing 

Note: “E-” represents the ego vehicle; “P-” represents the closest preceding vehicle in the same lane; “F-” represents the closest following vehicle 
in the same lane; “LP-” represents the closest preceding vehicle in the adjacent left lane; “LF-” represents the closest following vehicle in the 
adjacent left lane; “RP-” represents the closest preceding vehicle in the adjacent right lane; “RF-” represents the closest following vehicle in the 
adjacent right lane. 

Fig. 4. Modeling framework based on deep learning.  
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dependencies of the input data. Given an input sequence x0,x1,...,xnand the corresponding output sequence y0,y1,...,yn, the causality 
constraint causal convolutions ensure that the output yt at time t is only determined by the input sequencex0, x1, ..., xt.The 
one-dimensional fully-convolutional network (1DFCN) architecture is employed to produce the same length output as the input [46]. 
The TCNs can be expressed as, 

TCNs = 1DFCN + causalconvolutions (8) 

Using causal convolution, it is theoretically possible to generate TCN. However, the receptive field of causal convolution is con-
strained, making it difficult to capture the correlation between points in a long-term temporal sequence. Hence, dilated convolutions 
were added to causal convolutions, enabling an exponentially large receptive field. For a filter f : {1,2, ..., k − 1}, the dilated convo-
lution operation F on the element sof a 1-D sequence x ∈ Rnis formulated as, 

F(s) =

(

x∗df

)

(s) =
∑k− 1

i=0
f (k) · xs− d · i (9)  

Where d is the dilation parameter and is used to control the size of the interval, k is the filter size and represents the number of 
convolution kernels, * is the convolution operator, s − d • i accounts for the direction of the past. A dilated convolution will be 
backward to a full convolution when d = 1. The dilated causal convolution structure is depicted in Fig. 5. 

As shown in Fig. 5, the kernel size is set to 2, and the depth of the causal convolution is 3. The convolution indicated that the output 
at time t is associated with the input points from time t-7 to time t. Residual blocks are used to address disappearance and gradient 
expansion in TCN. Utilizing techniques such as longer convolutional kernels and residual connections allows TCN to capture long-term 
dependencies. As shown in Fig. 6, the rectified linear unit (ReLU) is utilized as an activation function, and batch normalization is used 
as the convolutional filter. A 1 × 1 convolution is added in the residual block when the input and output data have different lengths. 

By adjusting dilation parameters, the amount of information received by the TCN can be changed. The receptive field of the TCN 
can be calculated as, 

Rfield = 1+(K − 1) × Nstack ×
∑

i
di (10)  

Where Rfieldrepresents the receptive field of the TCN, K is the filter size, Nstackrepresents the number of stacks, di represents the dilation 
parameter in the ith layer. 

4.3. TCN with attention mechanism model 

To prioritize important input elements and enhance model performance and generalization, this study introduces an attention 
mechanism into the TCN network, creating a novel TCN-ATM model. The attention mechanism can be understood as a straightforward 
weighted summation operation. The relevant equations are formulated as, 

ut = tanh(ω ∗ ht + b) (11)  

at = softmax(ut) (12)  

c =
∑n

t=1
at ∗ ht (13)  

Where ht represents the extracted features by TCN layers at time t, ω is the parameter matrix at time t, at is the weight of ht and could be 
calibrated based on the impact of each data feature on the output. c denotes the weighted sum of features ht at time t. The structure of 
TCN-ATM is depicted in Fig. 7. 

Fig. 5. A dilated causal convolution with dilation factors d = 1,2,4 and kernel size k = 2 [68].  
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The TCN-ATM model architecture consists of an input layer followed by a TCN layer and an attention layer. The TCN layer pro-
cesses the input data while preserving the sequence information. An attention mechanism is then applied to the TCN output, capturing 
important features. Next, a global max pooling layer condenses the information into a fixed-length representation. Finally, a dense 
layer with softmax activation is added to produce class probabilities. This model architecture combines TCN and attention to effec-
tively extract temporal patterns and make accurate predictions and classification tasks. 

4.4. Multi-task prediction model 

MTL can be viewed as a generalization of multi-label learning and multi-output regression [87] and has the advantages of 
improving data efficiency, generalization ability, regularization ability, and overall performance[14]. It is designed to leverage a 
shared representation at the bottom layer and simultaneously enables learning multiple related tasks. For the kth task, the output yk in 
MTL can be expressed as: 

yk = hk(f (x)) (14)  

Where the f function represents the shared-bottom network, hk denotes the kth tower network, and x is the input variable vector. 
Compared to single-task learning, the multi-task learning framework can share information among different tasks, reduce training 
time, and improve the efficiency of data utilization [67]. Given three learning tasks, the comparison of single-task and multi-task 
learning architecture based on single-layer networks is shown in Fig. 8. Tasks 1, 2, and 3 are three related output variables that 
share common input indicators. Using a single-task learning model requires building three separate models, but in the multi-task 
learning framework, only one model is required to be constructed with three outputs. 

The loss function is a critical component of multi-task learning. How to design the loss function for multi-task learning is crucial to 
determining the performance of the model. A common approach is to use a linear function to directly combine these loss functions, as 
shown, 

Losstotal =
∑

i
ωiLossi (15)  

Where Losstotalrepresents the cumulative loss of all tasks, Lossi is the loss of the i-th task, and ωi is the weight of the i-th task. By adjusting 

Fig. 6. TCN residual block.  

Fig. 7. The structure of the TCN-ATM model.  
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ωi, the model performance for the i-th task can be changed. For instance, if there is a main task in all the tasks, increasing the loss 
weight of the main task can improve the model performance for it. In this study, all tasks are considered equally important with 
assigned equal weights. 

Based on the multi-task model framework, three multi-task models (MTL-LSTM, MTL-TCN, MTL-TCN-ATM) are first developed in 

Fig. 8. The comparison of single-task and multi-task learning architecture.  

Fig. 9. The general model structure of the three multi-task learning models.  
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this study. The multi-task model consists of a feature processing layer and a fully connected layer. The feature processing layer is used 
to extract temporal features, which can be LSTM or TCN or TCN-ATM. The general model structure is shown in Fig. 9. In the LSTM 
layer, TCN layer, or TCN-ATM layer, multiple tasks benefit from shared parameters and features. This sharing allows the model to 
leverage common patterns and relationships across different tasks, leading to improved performance and efficiency. Then, fully 
connected layers are employed to output prediction results for each variable. 

4.5. Evaluation indexes 

The modeling framework proposed includes classification models and sequence prediction models. The performance of classifi-
cation models is evaluated from two aspects. One is the overall performance of the classification, and the other is the recognition 
performance of each class [79]. The two indexes, precision and recall, are used to evaluate the detection performance of each class. The 
accuracy index measures the overall performance of the model. The three indexes can be calculated as follow, 

Accuracy =
T

T + F
(16)  

Precision =
TP

TP + FP
(17)  

Rcall =
TP

TP + FN
(18) 

Where T represents the number of correctly classified samples, F represents the number of incorrectly classified samples, TP is the 
number of correctly classified samples in a given class, FP is the number of incorrectly classified samples in a given class, FN denotes 
the number of incorrectly classified samples in a given class. The two indexes, Mean Absolute Error (MAE) and Root Mean Square Error 
(RMSE) are employed to evaluate the performance of sequence prediction models. The definitions are as follows, 

MAE =
1
N

∑N

i=1
|yi − y⌢i| (19)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1
(yi − y⌢i)

2

√
√
√
√ (20) 

Where yi is the observed value of the i-th output, N is the number of outputs,y
̑

i represents the predicted value of yi. The prediction 
model with lower MSE and RMSE values performs better. 

5. Results 

To testify the feasibility of our modeling framework, the LC-IR model and the LC-SP model are developed in this section, 
respectively. And we selected 545 LC vehicle trajectories and 478 LK vehicle trajectories for training and testing the lane change 
intention recognition model. However, only LC vehicle trajectories were used to train and test the LC vehicle status prediction model. 

Fig. 10. Lane-change intention labeling process.  
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5.1. Lane change intention recognition 

The vehicle lane change intentions are defined as some LC operational behavior produced before the lane change. To select an 
appropriate algorithm for classifying lane change intentions, this section compares the performance of four algorithms: LSTM, SVM, 
TCN, and TCN-ATM. 

5.1.1. Lane-change intention labeling 
In this study, the start time of the LC process is determined as the moment when the front boundary point of vehicles touches the 

lane boundary [84]. The annotation procedure determines the LC intention start time as 3 s forward the start time of LC processes[17]; 
[25]; [32]. The start point of LC processes is considered to be the end point of LC intention. A total of 24,092 frames are labeled as RLC 
points, while 19,792 frames are labeled as LLC points. Fig. 10 shows the detailed labeling processes. If the extracted sequence endpoint 
is located between the start time of the LC process and the LC intention start time (at least one RLC point or LLC point is included in the 
sequence), it is labeled as either LLC or RLC; Otherwise, it is labeled as LK. 

5.1.2. Results of LC intention recognition models 
The dataset is randomly split into a training dataset and a test dataset with a ratio of 8:2. For training the LC intention classification 

model, eighty percent of total data is applied, and twenty percent of samples are used for testing the classification performance. The 
parameter setting will affect the performance of the model. To obtain optimal parameter settings, some sensitivity experiments are 
performed on four models, using the control variable method. The parameters are selected based on the metrics of classification ac-
curacy and training time. The final model used should minimize the training time of the model (reduce the complexity of the model) 
without compromising the accuracy of the model. With an equal number of samples, all experiments are conducted using the same 
device. As an example, the impact of the number of epochs was evaluated with maintaining the same input durations (input time 
duration = 5 s). Fig. 11 depicted the results of the experiment. It is evident that when the number of epochs is set to a value greater than 
50, the loss function does not exhibit significant changes. Hence, the epoch is set to 50. Finally, the kernel size is set to 2, the Batch size 
is set to 128, the Loss function is set to categorical cross entropy, and the Adam optimizer was employed. The rate used in the dropout 
layer is 0.3. The size of dilated convolution interval is set to {21,22,23,…,2 n}, which depends on the input time series length. The 
number of filters is set to 64. The number of stacks of residual blocks is set to 1. 

In order to investigate the effect of input sequence length on the classification results, we evaluated the TCN-ATM model with 
different input durations. A total of 12 input lengths ranging from 30 frames (1 s) to 180 frames (6 s) were extracted at 15-frame 
intervals. Eight models such as SVM, Random Forest (RF), ExtraTrees (ET), Convolutional Neural Network (CNN), LSTM, Gated 
Recursive Unit (GRU), TCN, and TCN-LSTM are used as benchmark models. Among them, SVM, RF and ET models are three traditional 
machine learning models, CNN, LSTM and GRU are three commonly used deep learning models, and TCN-LSTM is developed based on 
TCN. 

Fig. 12 illustrates the overall accuracy comparison results of the nine models. It can be observed that, except for the CNN, each 
model has good classification performance (above 80%), even though the eight models are slightly different among different durations. 
The classification performance of SVM, GRU, CNN, and LSTM is more sensitive to the length of the input time series than the other five 
models. With the same input data time scale, the TCN-ATM model, in most cases, outperforms the other eight models. The best 
classification accuracy was achieved for five models (LSTM, CNN, TCN, TCN-LSTM, and TCN-ATM) when the input length was set to 
five seconds. Despite not attaining optimal accuracy using a 5-second input time length, the SVM, RF and ET al.gorithm exhibited a 
marginal variance in classification accuracy (less than 0.5%) compared to the optimal accuracy. Hence, a time duration T = 150 
frames (5 s) was chosen as input sequence lengths. Finally, 22160 RLC sequences and 15410 LLC sequences were extracted. To 

Fig. 11. loss function.  
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maintain data balance, 18000 LK sequences are randomly extracted from the raw dataset. Using the training dataset, the ten-fold cross- 
validated method is employed for model training and evaluation. 

Fig. 13 illustrates the outcomes of a Ten-fold cross-validation analysis conducted on the TCN-ATM model. The average accuracy for 
TCN-ATM algorithms is 0.982, with a standard deviation of 0.00001. The result indicated that TCN-ATM algorithms demonstrate high 
accuracy and consistency in their performance. With an input length of 150 frames, Fig. 14 illustrates the confusion matrix for the four 
models using the validation set. 

Errors in classifying LC intentions can be categorized into three categories: the misidentification of LK as LC (Type I), the 
misclassification of LC as LK (Type II), and the misidentification of LLC and RLC from each other (Type III). Fig. 14 shows that the 
proposed TCN-ATM algorithm reduces the impact of Type II and Type III errors compared to the other models. Type I errors signif-
icantly impact the accuracy of all four models. This error could originate from two sources. One is that the model correctly identifies 
the behavior of a failed lane change. The other could be attributed to the variations in individual lane change behaviors among drivers 
[4,62]. The LK process is influenced by factors such as driving style and driving ability, which can exceed the cognitive capabilities of 
the model, resulting in misjudgment. To provide a comprehensive assessment of classification performance, in addition to accuracy, 
other evaluation metrics such as precision, recall, and training time were evaluated through the confusion matrixes. The comparison 
results are displayed in Table 3. 

Table 3 presents the classification performance of TCN, TCN-LSTM, and TCN-ATM with an accuracy of 95.83%, 96.67%, and 
98.20%, respectively. SVM, ET, and RF demonstrate overall performance rates of 94.21%, 96.67%, and 94.39%, respectively. 
Meanwhile, LSTM, GRU, and CNN exhibit overall performance levels of 95.33%, 92.19%, and 78.71%, correspondingly. The results 
indicate that models developed based on TCN exhibit superior classification performance when compared to traditional machine 
learning algorithms such as SVM, RF, and ET, as well as other deep learning models like LSTM, GRU, and CNN. For instance, compared 
to LSTM, GRU, and CNN, the classification performance is improved using TCN by 2.87%,6.01%, and 19.49%. The results indicate that 

Fig. 12. Accuracy comparison of nine different models.  

Fig. 13. Ten-fold Cross-validation for the TCN-ATM model.  
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the TCN effectively captures long-term dependencies over multiple time scales in the input sequences. Notably, the TCN-ATM model 
achieves the highest classification accuracy, exhibiting improvements of 2.37% and 1.53% compared to the TCN and TCN-LSTM 
models, respectively. The results indicate that incorporating attention mechanisms into TCN to focus on relevant information can 
improve classification performance. On the other hand, when considered individually, the maximum deviation in classification pre-
cision is 8.92% for SVM, 8.34% for ET, 7.33% for RF, 9.22% for GRU, 7.73% for LSTM, 8.29% for TCN, and 4.74% for TCN-ATM. The 
maximum difference in recall index for each model is 1.87% for TCN-ATM. The results indicate that the TCN-ATM model provides 
more balanced results than other models. In summary, the proposed TCN-ATM model provides a promising solution for LC intention 
classification tasks, as it outperforms other models regarding classification accuracy. 

Fig. 14. Confusion matrix of classification models.  
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5.2. Lane change status prediction 

Lane change vehicle status involves six indicators: vx, vy, ax, ay, θ, Δθ. Predicting lane change status requires the simultaneous 
prediction of these six indicators. This section first uses the Pearson coefficient to investigate the relationship between those output 
indicators. Then three proposed multi-tasking learning models are used to capture the intrinsic relationship among these indicators. 
Since SVM, RF, and ET al.gorithms are commonly used for classification learning, LSTM outperforms GRU and CNN algorithmic 
models in classification tasks. Therefore, only the LSTM, TCN, and TCN-ATM algorithms are considered in this section. 

5.2.1. Correlation analysis 
MTL framework involves jointly learning multiple output indicators. The underlying assumption behind this approach is that all 

output indicators are related. Typically, the relationship between tasks could significantly affect the predictive quality of multi-task 
models [47]. Hence, the Pearson coefficient is employed to investigate whether there is an association between the variables. It 
can be expressed as, 

r =

∑n

i=1
(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − x)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − y)2

√ (21) 

Table 3 
Evaluation results of nine different models.  

Model Type Precision Recall Accuracy Model Type Precision Recall Accuracy 

SVM LK 88.31% 97.29% 94.21% ET LK 94.41% 95.74% 96.53% 
RLC 97.23% 93.46% RLC 97.03% 97.30% 
LLC 96.88% 92.10% LLC 98.44% 96.37% 

RF LK 90.36% 94.56% 94.39% LSTM LK 90.10% 96.21% 95.33% 
RLC 95.72% 95.02% RLC 97.83% 95.78% 
LLC 97.69% 93.28% LLC 97.79% 93.73% 

GRU LK 91.96% 86.39% 92.19% CNN LK 62.86% 99.42% 78.71% 
RLC 96.03% 95.15% RLC 80.64% 79.63% 
LLC 86.81% 95.52% LLC 94.94% 66.69% 

TCN LK 90.47% 97.36% 95.83% TCN-LSTM LK 94.19% 95.70% 96.67% 
RLC 98.17% 95.77% RLC 98.99% 97.13% 
LLC 98.81% 94.28% LLC 96.37% 97.16% 

TCN-ATM LK 95.09% 99.41% 98.20%  
RLC 99.63% 97.65% 
LLC 99.83% 97.64%  

Fig. 15. Pearson coefficient heat map.  
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Where xi represents the ith value of the indicator x, x and y represent the average value of indicator x and y, r represents the Pearson 
coefficient and takes values in the range [− 1,1]. The larger the absolute value of r, the stronger the correlation. In this research, only 
the indicators with an absolute value of Pearson coefficient greater than 0.2 are considered to be related[57]; [58]. There are two types 
of vehicle information used to calculate the Pearson coefficient separately: LK vehicles and LC vehicles. The LC vehicle information 
used is the driving intention labeled segment defined in Fig. 11. To mitigate the effect of sample imbalance on the results, 200 samples 
from each LK vehicle trajectory are extracted randomly. 

The Pearson coefficient heat map is shown in Fig. 15. It can be found that the Pearson coefficient between vx and vy, ay and vy, θ and 
Δθ, which are greater than 0.2 in both types of sequences. The indicators extracted from the LC sequences exhibit a stronger correlation 
than those extracted from LK sequences. No significant correlation was found between lateral acceleration (ay) and other indicators. 
Furthermore, the main discrepancies are observed between the heading-related indicators (θ and Δθ) and the velocity-related in-
dicators (vx, vy, and ay). For lane-changing processes, strong correlations were observed between vx and θ (0.25), vy and Δθ (0.56), ay 
and θ (0. 92), and vy and θ (0.93), indicating a close relationship between these variables. In contrast, no significant relationship was 
found in LK processes between heading-related indicators (θ and Δθ) and velocity-related indicators (vx, vy, and ay). The result could be 
explained by the fact that drivers have to adjust their driving direction and velocity during a lane change to achieve the desired 
purpose. However, during the lane-keeping phase without a specific task, the changes in heading and speed are random and separate 
from each other. 

5.2.2. Results of LC status prediction models 
With a focus on the purpose of the study, only sequences labeled as RLC and LLC are utilized in this section. Eighty percent of the 

extracted samples are used to train the model, while the remaining samples are used for validating the performance. The input 
sequence length is set to 150 frames(5 s). With a 1 s interval (indicators take an average of 60 frames), lane-change vehicle status in the 
next 2 s is predicted. Several experiments are performed to obtain optimal parameter settings. The batch size is set to 64, and training 
epochs are set to 30. The loss function is mean_squared_error, and the optimizer is Adam. For TCN and TCN-ATM layer, the number of 
filters is specified as 64. For the LSTM layer, the number of neurons in the hidden layer is set to 64, and the depth of LSTM is set to 2. 

The output indicators consist of six variables: vx, vy, ax, ay, θ, Δθ. Among these variables, vx, vy, ay, θ, and Δθ are related output 
variables, and ax is not correlated with other variables. In practice, three models, including LSTM, TCN, and TCN-ATM, could be 
utilized separately to address such sequence-to-sequence prediction issues. Given the expected output variables are simultaneously 
influenced by the same surrounding environment, three multi-task models (MTL-LSTM, MTL-TCN, MTL-TCN-ATM) are trained to 
improve prediction accuracy in this study. Three single-task learning models are used for comparison. The prediction results are listed 
in Table 4. 

From a single-task prediction perspective, the TCN-ATM model demonstrates superior performance compared to LSTM across 
various metrics (vx, vy, ax, Δθ, θ). Additionally, it exhibits a significant reduction in Mean Absolute Error (MAE) and Root Mean 
Squared Error (RMSE) when compared to the TCN model. Notably, the TCN-ATM model excels in predicting the longitudinal accel-
eration ax, with an RMSE value of 1.235 ft/s2. These results highlight the effectiveness of incorporating the attention mechanism into 
the TCN model, thereby enhancing its performance in single-task learning. Consequently, the TCN-ATM model can be considered a 
practical and reliable option for single-index forecasting tasks. 

From a multi-task prediction perspective, the MTL-LSTM model outperforms the MTL-TCN and MTL-TCN-ATM models for in-
dicators vx, vy, ay, and θ. The MTL-TCN-ATM model demonstrates optimal prediction results for the Δθ indicator while performing 
poorly for other indicators. With an RMSE value of 2.510 degree/s and an MAE value of 2.042 degree/s, the MTL-LSTM model shows 
considerable space for improvement in terms of the Δθ indicator. To compare the performance of single-task learning models with 
multi-task learning models, the improvement ratio is defined as follows: 

pi = 1 −
mi

si
(22)  

Where mi represents the evaluation index (RMSE, MAE) value of i-th task using multi-task model, si represents the evaluation index 
(RMSE, MAE) value of i-th task using the corresponding single-task models, pi is evaluation index improvement ration of task i using 
MTL model comparing to single-task model. A positive value of pi indicates that the MTL model outperforms the corresponding single- 
task model in predicting task i, while a negative value indicates the opposite. Table 5 presents the result of the improvement in 
prediction performance. 

As is evident in Table 5, the proposed MTL-LSTM, and MTL-TCN over five indicators provide markedly increased performance 
compared to the corresponding single-task model. Specifically, the MTL-LSTM model demonstrates an average decrease of 26.04% in 
MAE and 25.19% in RMSE, while the MTL-TCN model exhibits an average reduction of 25.2% in MAE and 24.49% in RMSE. The 
performance improvement resulting from considering the relationship between output variables may be critical to accurately pre-
dicting driving status. However, the performance of the MTL-TCN-ATM model is much lower than that of the TCN-ATM model. The 
decrease in performance resulting from introducing attention mechanisms in multi-task learning can be attributed to issues such as task 
competition and conflicts, optimization challenges, and feature conflicts [69]. Different tasks may require attention to different fea-
tures or information. When incorporating attention mechanisms, it becomes necessary to address feature conflicts among tasks to 
ensure that the attention mechanism can properly focus on and capture the relevant features for each task. In addition, when attention 
becomes excessively focused on one task, the important features of other tasks may be neglected, resulting in performance degradation. 
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6. Conclusion 

LC behavior is a fundamental driving operation that largely affects traffic efficiency and safety. Accurately detecting and predicting 
LC processes of the surrounding vehicles can help autonomous vehicles better understand their surrounding environment, recognize 
potential safety hazards, and improve traffic safety. In this paper, the LC vehicle status was characterized using six variables, including 
the longitudinal velocity (vx), lateral velocity (vy), longitudinal acceleration (ax), lateral acceleration (ay), vehicle heading (θ), and 
yawRate (Δθ). Using vehicle trajectory data, this paper developed a unified modeling framework for lane-change intention recognition 
(LC-IR) and lane-change status prediction (LC-SP). To accurately identify LC intention, a novel TCN-ATM model was first utilized in 
this research. Considering the intrinsic relationship between outcome factors, three MTL models (MTL-LSTM, MTL-TCN, and MTL- 
TCN-ATM) were constructed to predict LC vehicle status. A total number of 1023 vehicle trajectories was first extracted from the 
CitySim dataset to validate the reliability of the proposed model. The Pearson coefficient was conducted to investigate the relationship 
between the output variables. Both training time and classification accuracy were utilized as metrics to evaluate the performance of the 
model. 

For the LC intention recognition issues, this study conducted a comprehensive comparison of SVM, RF, ET, LSTM, GRU, CNN, TCN, 
TCN-LSTM, and TCN-ATM models. The Ten-fold cross-validated method was employed to ensure robustness in model training and 
evaluation. With an input length of 150 frames, the proposed TCN-ATM model achieves an impressive overall classification perfor-
mance of 98.20%. Compared to the other models, the results demonstrate that the TCN-ATM model reduces the impact of Type I and 
Type III errors, demonstrating a higher accuracy. For the LC driving status prediction issue, six metrics are extracted from the vehicle 
trajectory to characterize the driving status in this paper. The Pearson coefficient was employed to investigate the relationship between 
six output indicators. The result indicated a close relationship between the heading-related indicators (θ and Δθ) and the velocity- 
related indicators (vx, vy, and ay). To capture the intrinsic relationship of output indicators, this research developed three multi- 
task models: MTL-LSTM, MTL-TCN, and MTL-TCN-ATM. The results showed that the proposed TCN-ATM models could be consid-
ered a practical and reliable option for single-index forecasting tasks. The MTL-LSTM model outperforms the MTL-TCN and MTL-TCN- 
ATM models for indicators vx, vy, ay, and θ. With an average reduction of 26.04% and 25.19% in the MAE and RMSE, respectively. The 
proposed MTL-LSTM over five indicators provides markedly increased performance compared to the corresponding single-task model. 

The research shows that the novel TCN-ATM model outperforms LSTM, SVM, and TCN models in lane change intention recognition. 
Considering the correlation of related indicators could improve the prediction accuracy and training efficiency of the model. According 
to the obtained index vx, vy, ay, ax, θ, and Δθ, the real-time traffic conflict index can be calculated [11]. According to the index ay, ax, θ, 
and Δθ, it can be determined whether the driver has taken the avoidance behavior. The developed model holds great potential in 
enhancing autonomous vehicles’ perception and prediction capabilities and improving vehicle control strategies. This study also has 
some study limitations. In the multi-task learning model, we use the same weights for the loss function of each task. To eliminate the 
effect of magnitude on the prediction results, all input and output vectors are normalized. In the future, the prediction accuracy can be 
further improved by using the adaptive loss function. For instance, if there is a main task in all the tasks, increasing the loss weight of 
the main task could improve the model performance. 

Table 4 
Model result comparison.  

Model Metrics Task 

vx vy ax ay Δθ θ 

LSTM MAE 2.817 0.572 1.256 0.692 2.375 1.420 
RMSE 3.926 0.704 1.662 0.937 3.049 1.845 

MTL-LSTM MAE 1.288 0.502 – 0.632 2.042 0.838 
RMSE 1.712 0.684 – 0.866 2.510 1.080 

TCN MAE 2.977 0.596 1.064 0.669 8.159 1.894 
RMSE 4.134 0.793 1.402 0.922 10.60 2.408 

MTL-TCN MAE 1.982 0.547 – 0.648 2.945 1.566 
RMSE 2.534 0.751 – 0.916 3.875 2.062 

TCN-ATM MAE 1.749 0.561 0.975 0.875 0.560 1.002 
RMSE 2.080 0.693 1.235 1.188 0.799 1.293 

MTL-TCN-ATM MAE 17.18 1.751 – 0.869 0.601 1.775 
RMSE 19.88 2.081 – 1.183 0.858 1.464  

Table 5 
Performance improvement rate of prediction (%).  

Model Index vx vy ay Δθ θ 

MTL-LSTM vs LSTM MAE 54.28 12.24 8.67 14.02 40.99 
RSME 56.39 2.84 7.58 17.68 41.46 

MTL-TCN vs TCN MAE 33.42 8.22 3.14 63.90 17.32 
RSME 38.70 5.30 0.65 63.44 14.37 

MTL-TCN-ATM vs TCN-ATM MAE -882.2 -212.12 0.69 -7.32 -77.15 
RSME -855.77 -200.29 0.42 -7.38 -13.23  
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