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Abstract— Bus service is the most important function of public
transportation. Besides the major goal of carrying passengers
around, providing a comfortable travel experience for passengers
is also a key business consideration. To provide a comfortable
travel experience, effective bus scheduling is essential. Traditional
approaches are based on fixed timetables. The wide adoptions of
smart card fare collection systems and GPS tracing systems in
public transportation provide new opportunities for using the
data-driven approaches to fit the demand of passengers. In this
paper, we associate these two independent data sets to derive the
passengers’ origin and destination. As the data are real time,
we build a system to forecast the passenger flow in real time.
To the best of our knowledge, this is the first paper, which
implements a system utilizing smart card data and GPS data
to forecast the passenger flow in real time.
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I. INTRODUCTION

BUSES are the most widely used public transportation in
many cities today.

To improve the quality of bus service, a real-time system
that can monitor and predict the Passenger Flow of the
running buses is helpful. Here, Passenger Flow denotes the
number of on-board passengers of a bus, which varies over
time and space. The passenger flow can partially reflect the
collective human mobility along a route and the quality of bus
service in term of comfort. From a scheduling perspective,
it tells you how many people travel or want to travel on a
route. This information can guide the operators to allocate
and schedule the bus route and timetable dynamically in fine
granularity.

Current practice in Bus Transit System (BTS) operators
demonstrates that manual data-collection efforts are costly and
usually applicable only in small scale. The use of automated
data-collection systems grow rapidly and show great potential.
Automatic Fare Collection (AFC) devices that can record
payments of riders using smart card, and a GPS embedded On
Board Unit (OBU) that can track the bus are widely deployed.
With the mature of big data systems, we have the opportunity
to estimate and predict the passenger flow of every bus in
urban wide BTS.

To depict the problem more clear, we can consider a
concrete example as shown in Figure 1. Several buses operate
in a line of route where we assume that no passing occurs
among them along their whole trips. Passengers get on and off
at each station, which changes the passenger flows of the buses
over time and location. The solid lines and circles illustrate the
segments and stations that the buses already travelled before
current time, and the dash lines represent the remainder of the
trips they will travel. The problem is that given the real time
data of AFC transaction records and the OBU traces of the
buses, how to estimate the number of riders on each bus and
how to predict the number in the remainder of the trip in the
near future.

While the problem looks like a straight forward counting
job, the solution is not easy due to the limitation of avail-
able data. The challenges may lie in the following status
quos:

• Current on bus devices do not offer a facility that
can automatically and precisely count the number of
the passengers getting on and off the bus, which may
also be impractical to make it widely by human field
investigations.
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Fig. 1. An illustration of the real time passenger flow estimation and
prediction problem in BTS.

• Automatically collected data such as AFC records and
GPS can be useful but not adequate. Some facts can-
not be observed directly, such as a passenger’s getting
off or someone paying by coins. So we need to make
proper estimation rather than just counting.

• Finally, due to the uncertainty of people’s mobility, it is
also challenging to predict the passenger flow of future.

In summary, real-time passenger flow estimation and pre-
diction in BTS are important but to our best knowledge,
there is no existing approach for this problem. In this paper,
we develop a system to estimate and predict the passenger
flow in term of the number of riders in real-time by analyzing
the AFC records and the bus GPS data. To make this possible,
we make the following contributions:

• Firstly, we estimate the number of the riders getting on at
each station. We derive the boarding position of a passen-
ger by querying the GPS trace dataset with the taping time
as a key. By analyzing the intervals between every two
consecutive taping recodes, we derived an approximate
estimation of the number of these passengers.

• Secondly, we estimate the passengers’ alighting stations
from the boarding records of their transit trips and of
their return trips if they show regular commuter patterns,
a.k.a. the Trip Chain analysis. For the passengers paying
by coins and those whose next trips cannot be identified,
we use the distribution of the alighting stations of all
smart card users to approximate the probability of a coin
user alighting at a station.

• Thirdly, with the real-time estimation of the number of
the passengers on a bus, we further predict the number
of the passengers that will be on the bus at its remainder
stations.

We apply our method in several routes of buses in the city of
Shenzhen and compare them with some baseline algorithms.
The results show that our solution is compatible with different
routes and outperforms other baseline algorithms. The rest of
the paper is organized as follow: After a brief introduction
of the related work in Section II, we give an overview of
the problem and our solution in Section III. In Section IV,

we focus on the real time estimation method and followed by
Section V, which revolves around the prediction algorithm.
Finally we introduce the setting for applying our solution in the
city of Shenzhen and evaluate the performance in Section VI
and end up the paper with conclusion in Section VII.

II. RELATED WORK

The wide adoption of IoT provides new opportunities for
using the data driven approaches in Intelligent Transportation
System (ITS) [1]. As an IoT device in the public transportation
system [2], the smart card can be identified by a unique
serial number. Every time a smart card is taped, details of
the transaction are recorded. The OBUs, usually with GPS
tracing devices, can record the physical position of the vehicle
at different time. Fusing the two types of data can help us to
estimate the crowding in the bus [3].

Short-term traffic forecasting [4], [5] and short-term pas-
senger demand forecasting [6] are successful applications
of short-term transportation forecasting in the literature.
The short-term transportation forecasting approaches can be
generally divided into two categories: parametric and non-
parametric techniques [4], [7], [8].

In the traditional parametric techniques, historical
average [9], smoothing techniques [10], and autoregressive
integrated moving average (ARIMA) [11] have been applied
to forecast transportation demand. Particularly, ARIMA has
become one of the common parametric forecasting approaches
since the 1970s. The ARIMA model has been widely applied
in forecasting short-term traffic data such as traffic flow,
travel time, speed, and occupancy [12], [13]. In addition,
with the characteristics of seasonality and trends in traffic
data, some researchers have applied seasonal ARIMA to
predict traffic flow [14], [15] and international air passenger
flow [16], [17]. As stated in Brooks [18], ARIMA performs
well and robustly in modeling linear and stationary time
series. However, the applications of ARIMA or seasonal
ARIMA models are limited because they assume linear
relationships among timelagged variables so that they may
not capture the structure of non-linear relationships [19].

For the non-parametric techniques, several methods have
been used to forecast the transportation demand such as
neural networks [4], [20], non-parametric regression [7], [21],
Kalman filtering models [22], and Gaussian maximum like-
lihood [23]. Among these non-parametric techniques, neural
networks have been frequently adopted as the model-
ing approach because they possess the characteristics of
adaptability, nonlinearity and arbitrary function mapping
capability [19]. Essentially, neural networks can deal with
complex non-linear problems without a priori knowledge
regarding the relationships between input and output vari-
ables [19]. Recently, several previous studies have developed
neural network based models for traffic and transportation
forecasting which include multilayer perceptron neural net-
works [9], Kalman filter based multilayer perceptron [24],
time-delay neural networks [25], radial basis function neural
networks, dynamic neural networks, state-space neural net-
works, and the support vector machine for regression, etc.
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Fig. 2. The standard deviation of arrival time and the passenger flow
fluctuations.

III. OVERVIEW

In this section, we first illustrate the motivation of a real
time passenger flow estimation and prediction system for BTS.
Then based on the ability of the deployed automatical data
collection devices in current BTS, we formulate the problem
as a model to estimate and predict a time series values of
matrices and finally present a overview of the work flow of
the system.

A. Motivation

The motivation of a real time passenger flow estimation
and prediction system lies in the uncertainty existing in urban
wide mobility and traffic flow. The left plot in Figure 2 shows
the different periods’ standard deviation of a line’s arrival
time in 15 days. We can see in different periods, the arrival
time varies greatly. The max standard deviation can reach
365 seconds. Such fluctuation can be observed over time and
stations in the collected data in current BTS. The right plot
in Figure 2 shows the box plot of passenger flow of the buses at
one stations over time. We divide the operation hours of a bus
line into periods of 30 minutes and investigate the passenger
flow in the periods in different days. We found that in most
periods, the passenger flow of the same periods in different
days can be quite different.

The correlation between adjacent buses is considered as
the representation of Temporal and spatial smoothness of
series. We can imagine the passenger flow at a certain station
increasing or decreasing gradually. The correlations are found
in our preliminary results of the number of riders calculated
from historical data. We show two cases at a certain time
and a station in Figure 3. The horizontal axis represents the
passenger flow at time t or at station n and the vertical axis
represents the passenger flow at time t +1 or at station n +1.
We can see that the values in the adjacent time slots and
stations have correlations.

With such a real time bus passenger flow estimation and
prediction, a lot of potential applications both for bus operators
and passengers can be developed upon it. For one example,
we embedded the passenger flow information in a Bus Tracker
App. Like traffic monitoring functions in map application, such
additional information can improve the App users’ experience
by eliminating their curiosities about coming buses’ crowding
and also help them to decide which bus to get on. All of these
applications can be done based on this system.

Fig. 3. Temporal and Spatial correlations in the number of riders on bus.

B. Problem Formulation

Based on the motivation and preliminary correlation analy-
sis, the estimation and prediction are important and feasible
in running BTS. To ease the representation, we formulate the
problem as estimation and prediction of values of time series
as follows:

N(i, j) denotes the number of passengers on Bus �i at
Station � j after the bus already loaded and unloaded at the
station. L(i, j) denotes the number of passengers boarding the
bus, which further composes from two parts, i.e., L(i, j) =
Ls(i, j)+ Lc(i, j). Ls and Lc stand for the numbers of riders
paying by Smart cards and Coins respectively. In current BTS
with AFC, Ls can be observed while Lc can only be estimated.
U(i, j) denotes the number of passengers alighting the bus.
As the passenger’s alighting behavior is not observable from
the AFC data, we decompose U(i, j) as U(i, j) = Uh(i, j) +
Up(i, j). Here Uh denotes the number of passengers whose
destinations are inferred from their historical trip chain pattern
and Up denotes the number of passengers whose destinations
are estimated based on a probability model. We will discuss
the estimation method in Section IV.

Ñ(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ñ11 Ñ12 . . . Ñ1,k N̂1,k+1 . . .

Ñ21 Ñ22 . . . N̂2,k N̂2,k+1 . . .
...

...
. . .

. . .
...

...

Ñi,1 . . . Ñi, j N̂i, j+1
...

...
...

...
. . .

. . .
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

B×S

(1)

Based on above notation, it is obvious that N(i, j) =
N(i, j − 1) + L(i, j) − U(i, j). Suppose there are B bus
services from the first bus service to the last one on a day, and
the number of stations is S. The N(i, j) will form a B × S
matrix which we denote N. At a certain time t , if the Bus �i
has passed Station � j and has not reached Station � j + 1.
We estimate the values Ñ (i, k) for all k ≤ j and predict the
values N̂(i, k) for all k > j . Therefore we get a time series
of partially estimated and partially predicted matrices Ñ(t) as
Eq. 1, where our goal is to make estimation and prediction
errors of Ñ(t) to the true N as small as possible.

C. The Architecture and Datasets

The architecture of the estimation and prediction system is
shown as Figure 4. Three datasets are involved for estimation
and prediction. The table fields and descriptions are elaborated
in Table I. The GPS dataset contains the GPS coordinates of

Authorized licensed use limited to: Soonchunhyang Univ. Downloaded on February 09,2024 at 07:35:39 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: REAL-TIME PASSENGER FLOW ESTIMATION AND PREDICTION METHOD FOR URBAN BUS TRANSIT SYSTEMS 3171

Fig. 4. The data processing work flow.

every bus every 20-40 seconds. The smart card dataset records
every smartcard’s users’ boarding event. The bus route map
is static data and used for mapping the passenger’s boarding
event to the station. Collecting the three datasets to localize
the boarding events will be discussed in Section IV-A

By analyzing the boarding events, the data process work
flow is then divided into two tasks as follows:

1) Estimation: Firstly, we estimate the numbers of passen-
gers on buses by estimating the passengers ODs. Not only
the ODs of smart card users, but also the coin users are
considered. The estimation of the passengers’ origins is based
on mining the temporal and spatial features of the smart card
tapping events, which will be discussed in Section IV-B. The
estimation of the passengers’ destinations is based on trip
chain analysis and a probability model and will be presented
in Section IV-C.

2) Prediction: After estimation, we then build a model to
predict the passenger flow. This model mainly contains two
steps: Coarse prediction and Calibration. The coarse prediction
is based on analyzing the historical data to see which passenger
flow pattern in the historical estimations is most similar to
current one. Then we use the result of coarse prediction as
the state transit function of an Extended Kalman Filter (EKF)
and apply the EKF to the current passenger flow to predict
future value. Section V-A and V-B will discuss the two steps
in details respectively.

IV. ESTIMATION

In this section, we describe our design of estimating the pas-
senger flow of the running buses. To begin with, Section IV-A
first introduces the methods that locate each AFC record’s cor-
responding boarding station. Then in Section IV-B, we present
an algorithm for calculating the number of the passengers
boarding the bus at a station, which also includes how to
estimate the number of those paying by coins. In Section IV-C
we further propose a probabilistic model to estimate the
number of the alighting passengers at each passed station.

Therefore, with both numbers of the boarding and alighting
passengers, we finally obtain an estimated value of the number
of the on board passengers.

TABLE I

GPS DATASET AND SMART CARD DATASET

Fig. 5. Determine the vehicle’s line.

A. Time Synchronization and Boarding Event Localization

As is mentioned in the overview of the model in Section III,
the only data with respect to the passengers that can be
observed are their records of payment by smart cards when
they get on. However because there is no location field in the
AFC records, one labelling step that tags a get-on station to
every smart card payment record is prerequisite. Otherwise
we may mis-located a passenger’s boarding event to a wrong
station.

To label a smart card payment record with a station,
we match the time stamps in AFC records and OBU records.
We then can locate the stations of AFC records by matching
them with the OBU records. However there may exist time
difference between the AFC devices and OBU devices as they
work independently. Moreover, the GPS locations are sampled
every 20-40 seconds in OBU. There do have chances that there
is no GPS record at the location of a station, which means that
there may be no time stamp in OBU records that can match
some boarding events. So in order to match the time stamps,
we need to interpolate the time stamps in OBU records and
synchronize the time stamps in AFC records and OBU records.

Figure 5 illustrate the interpolation and time synchronization
process for boarding event localization. We first interpolate the
time at which the bus arrives at a station in the OBU records
timeline. The interpolation is simply calculated linearly by
the driving distances between the station and its nearest GPS
records, as expressed in Eq. 2.

ts j = tl j + (tl j+1 − tl j )d j−
d j− + d j+

(2)
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Fig. 6. Illustration of boarding events in the timeline.

The synchronization is then processed as finding a time
offset �T to minimize the sum of the differences between
each AFC payment time and the time of the bus arriving at its
corresponding station for all the AFC records along a whole
bus trip. Here the corresponding station of an AFC payment
is the station whose arriving time is closest to the payment
time after calibrating �T in the timeline. The synchronization
process can be expressed as Eq. 3.

�T = arg min
�T

∑
i

min
j

|t pi − �T − ts j | (3)

Because we ignore some facts such as buses’ speed variety
and stopping time at a station, We admit that the time offset
�T derived from Eq. 3 may be not precisely accurate and
have error. However with Eq. 3, the corresponding station of
each AFC payment t pi can also be figured out as the station
j where j = arg min j |t pi − �T − ts j |. As we can assume
that the buses’ stopping time at a station is much less than
their travelling time between adjacent stations, the calculated
corresponding stations should be correct in most cases.

B. Estimation of L(i, j)

Based on above time synchronization and boarding event
localization process, we can then label every AFC payment
with its corresponding station. As a result, we can easily
count the passengers who use smart card and get on Bus i
at Station j , i.e., Ls(i, j). However, if we further hope to
estimate the total number of the boarding passengers L(i, j),
including that of those using coins, i.e. Lc(i, j), current
collected data failed to give direct observations. So we went
for field investigation and found that the time gaps between
any two consecutive smart card payment events can be a clue
to infer the hidden Lc(i, j).

Figure 6 magnifies the boarding events in the timeline.
Through field investigation, we found that passengers boarding
the bus usually form a queue and get on one by one. They
pay their ride fees either by smart card or by coins one
after another. So the payment time can be an approximate
arithmetic sequence. If the time gap between two consecutive
smart card payment events is larger, it is more probable to
have one or more coin payment events between them. Then
the question can be that “Given an observed t as the time
gap, what is the probability distribution of X , where X is the
number of the coin users boarding during t?”

To answer the question, we manually collect data by record-
ing 20 video clips at 20 stations where there are totally
40 smart card users and 20 coin users getting on buses.
We extract the time of every payment event and construct a
histogram of the time intervals between two events. We found
that the payment events almost fit poisson process very well,

Fig. 7. Time distribution of each getting on event.

as shown in Figures 7. Therefore, using the field investigation
data as observed samples, we obtain the intensity parameter
λ = 0.34 for the poisson process, which means that averagely
a passenger takes 3 seconds to get on the bus. Finally we use
this λ in estimating Lc(i, j) as Eq. 4,

Lc(i, j) =
Ls(i, j )−1∑

k=1

arg max
n

P (n; λ(t pk+1 − t pk)) (4)

where P(n; λτ) = e−λτ (λτ)n

n! is a poisson distribution with
associated parameter λτ , representing the probability of the
number of events in time interval (t, t + τ ].

In case that we don’t have other source to observe the
coin users in current infrastructure, such estimation can be
a practical solution in current system. And we are witnessing
that the smart card is being the trend in urban transportation
system. We believe with larger portion of users using smart
cards, more boarding events are observable. The estimation
accuracy can be further improved.

Finally, with Ls(i, j) counted and Lc(i, j) estimated,
we can get the estimation of the total boarding passengers
as L(i, j) = Ls(i, j) + Lc(i, j).

C. Estimation of U (i, j)

With the number of getting on passengers known, the next
task is to estimate the number of passengers getting off at
each station. Then we are able to output the number of
passengers on the bus. However, as in Shenzhen neither smart
card users nor coins users need extra operations before they
get off, there is no direct way of observing or counting the
alighting behavior in our dataset. So we estimate the number
of alighting passengers based on trip chain analysis from
empirical data. Specifically, we differentiate the passengers
into 3 types: 1) those who use smart card and show strong
regularity in historical records of round trip ODs or transit
rides; 2) those who use smart card other than the first type
and those who use coins. 3) those who use smart card and
take transit ride after alighting current bus. The numbers of
each type of the passengers who alight from Bus �i at Station
j are Uh(i, j), Up(i, j) and Ut (i, j) respectively.

1) Estimation Based on Historical Regularity: For the first
kind of passengers, we estimate each passenger’s getting off
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station based on the regularity in his/her historical ODs or tran-
sit pattern. More specifically, commute people may usually
have fixed ODs everyday and their trips’ destinations can
be inferred from the origin of corespondent return trips.
If one or multiple transits involve in one’s trip, the destination
of each segment of trip can be inferred from the origin of the
next segment.

Therefore, we first analyze the historical data and extract
trip tuples of < RI D, Oi , Ti > where Oi and Ti represent
the origin and the time of the rider RI D paying his i th trip.
If the trip is paid by smart card, RI D is identified by the smart
card ID. Otherwise, the trips are paid by coins, which are not
identifiable and excluded from the regular trips discussion.
Given an identifiable tuple < RI D, Oi >, if Oi+1 has a larger
probability than pth to be one certain station s, we name
the trip of RI D originating Oi to be a regular trip. After we
identify all the regular trip tuples from the historical record,
we can then make estimation of the destination of new trip of
RI D from Oi , Di to be s, as expressed in Eq. 5.

Di ≈ arg max
Oi+1

{P|P = P (Oi+1|RI D, Oi ) , P ≥ Pth} (5)

where x ≈ y stands for x and y are two adjacent stations such
as two stations in outbound and return directions respectively
of the same bus line at the same location, or transit stations
at same locations shared by two lines.

Practically, we require the sample size to be larger than 10
to compute the empirical probability of P = P(Oi+1|RI D, Oi )
and set Pth = 80%. If no P meets the requirement of
Pth or the sample size in historical data, the trip will be named
as a random trip. Note that the trip tuples will incrementally
update in the historical data. As the time that the system run
goes longer, it is more probable to find out these regular trips
in the dataset. Therefore, for this type of passengers, we can
estimate their getting off station when we observed their smart
card payment at the getting on stations. By counting the
numbers of this type of passengers who get off at a Station
j from Bus �i , we can obtain the estimation of Uh(i, j) for
every passed station.

2) Dispatch Based on Common Distribution Assumption:
In cases that there are not enough samples in the historical
dataset to help us to derive the Di of a correspondent trip
< RI D, Oi , Ti >, we assume that Di has the same distribution
as that of regular trips. The assumption can also be interpreted
as the distribution of the destination of a trip is independent
to whether the trip is a regular trip, as shown in Eq. 6.

P(Di |RI D, Oi ) ⊥ P(< RI D , Oi , Ti > is a regular trip) (6)

Based on the assumption, we calculated the empirical
distribution of D on condition of O from the observable
ODs of regular trips in historical data, denoted as P(D|O).
Then we dispatch the non-regular trips including estimated
unidentifiable trips paid by coins from all passed stations to
different destinations based on P(D|O), as expressed in Eq. 7.

Up(i, j) =
j−1∑
k=1

L p(i, k)P(D = j |O = k) (7)

where L p(i, k) is the number of non-regular trips, including
Lc(i, k), originating from Station k on Bus �i .

With Uh and Up calculated, the number of the passengers
getting off at a station can be preliminary estimated as the
sum of Uh and Up .

3) Estimation Amendment Based on Transit Payment:
Besides the real time estimation for regular trips and non-
regular trips, we applied further amendment operation if we
found confliction between the real time estimation and later
transit payment record. For instance, suppose we first estimate
that a rider RI D’s regular trip < RI D, Oi , Ti > should head to
D̂i at Td based on RI D’s historical travel regularity. However
another payment record shows that RI D has taken a transit ride
at another Station Oi+1 near Di at time Ti+1 where Di �= D̂i ,
which means that RI D gets off at Di rather than D̂i . In such
case, we need to amend the estimation based on such observed
fact. Likewise, for a non-regular trip, if observed transit fact
conflicts with what we dispatch based on empirical probability,
we also adopt the amendment. All the amendment can not be
real time as transits take time. But as transits usually take not
too long time, the delay should be acceptable.

With the above 3 steps, we output U(i, j) for all passed
stations and can finally compute the bus passenger flow
estimations Ñ (i, j) for every bus at every station.

V. PREDICTION

In this section, we present the proposed model to predict
the short-term passenger flow. We build a 2-Step Real Time
Prediction (2RT P) model based on Extended Kalman Fil-
ter Model. Basically the model contains two steps: Coarse
prediction based on historical data, which is introduced in
Section V-A and Calibration based on Extended Kalman Filter
prediction, which is discussed in Section V-B.

A. Coarse Prediction Based on Historical Data

To predict the passenger flow, we firstly search the historical
data to find the passenger flow pattern that is most similar
to current estimation. The similarity is defined a Equation 8,
where S is the similarity of matrix Ñ and matrix N . Ñ is the
real-time estimation and N is the passenger flow of one day
in historical data. Operator <,> denotes the inner product,
which in our case is the sum of the products of corresponding
elements of the two matrices.

S = < Ñ , N >√
< Ñ , Ñ > ∗ √

< N, N >
(8)

We assume that if current passenger flow pattern is similar
to that of some day in the history, the following passenger
flow may change similarly as the pattern on that day. More
particularly, with coarse prediction, if we input the sequence
of the passenger flow estimation {x1, x2, x3, . . . , xn}, we get
a sequence {u1, u2, u3, . . . , un, un+1}, where they are similar
in period 1 ∼ n, and un+1 is output as the coarse prediction
value of next period.

B. Calibration Based on Extended Kalman Filter

With coarse prediction, we then use an extended Kalman
Filter [26] based predictor to calibrate the coarse prediction
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Fig. 8. The model of evaluation.

and output the final predictive value. The prediction is running
for every station separately. The transition function f of the
EKF is a piecewise function that fitting the historical sequence
{u1, · · · , un+1} as Equation 9. Both the predicted state xk

and the observation state zk are the passenger flow. There-
fore, the observation function h is expressed as Equation 10.
By constantly calculating xk iteratively, we compute the cali-
brated predictive value.

f (xk−1, uk−1) = xk−1 + uk−uk−1
uk−1−uk−2

(xk−1 − xk−2) (9)

h(xk) = xk (10)

VI. EVALUATION

In this section, we evaluate the performance of the system.
We first present the method and experimental data for evalu-
ation in Section VI-A and then evaluate the performance of
estimation and prediction in Section VI-B and VI-C.

A. The Method and Experiment for Evaluation

The overall performance of the system depends on the
accuracy of estimation and prediction. The passenger flow is
calculated based on estimation of the numbers of boarding
and alighting passengers at each station. Therefore we use
the accuracy of OD estimations of each trip as the metric
to evaluate the performance of passenger flow estimation.
On the other hand, we assess the proximity of the predicted
value to the estimated value in the future to evaluate the
prediction model itself. We use these two metrics to evaluate
the proposed model. If the system can estimate the OD of each
trip accurately and can predict future estimation accurately,
we can then consider that the system work well. However
it is hard to get the ground truth of the OD in large scale
to evaluate the accuracy. So we use two methods in different
scales to indirectly evaluate the methods proposed in the paper,
as shown in Figure 8.

Firstly we apply the estimation model in the metro system,
where the AFC system work similarly to that in the bus system,
except that passengers will tap the smart card again when
they exit the destination station. Consequently we have the
ground truth of the OD of every trip. We evaluate the accuracy
of OD estimation in the metro system. The evaluation result
can indirectly validate the estimation model in estimating

Fig. 9. The Proportion of the Trip-chain Inferrable ODs.

passengers flow of smart card users in large scale. Secondly we
did small scale field experiments to evaluate the OD estimation
of the trips whose OD can be not inferred, such as the coin
users.

The prediction module uses current estimation to predict
the future value. In condition that the estimation works well
and the prediction result is close to the estimation in the
future, the prediction model is then acceptable. We compare
our prediction method with serval baseline methods with same
estimation input. We also use the same future estimation value
as criteria.

The evaluation is performed on the study on bus Line �B691
in ShenZhen. �B691 contains 18 stations one-way and passes
through many residential areas and business areas.

B. Evaluation of the Estimation

The number of boarding passengers are generally measur-
able by counting the smart card tapping records and analyz-
ing the intervals between two tapping records. The number
of alighting passengers are estimated based on trip chain
inference and a probability model. So we first evaluate the
proportions of the two types estimations. Then we use two
methods in different scales to evaluate the accuracy of trip
destination estimation.

1) The Proportion of the Trip-Chain Inferrable ODs:
Firstly, we present the proportions of the two types OD estima-
tions. We use the AFC data in 6 days as shown in Figure 9. The
blue boxes represent the numbers of trips whose destinations
are inferred by trip chain model. The green boxes represent
the numbers of trips whose destinations are estimated based
on the probability model. We find that about 39.1% to 55.0%
of destinations can be inferred from trip chain model. The
rest are estimated based on the probability model, which are
usually occasional trips of smart card users or trips paid by
coins.

2) The Accuracy of Destination Estimation: Secondly,
we analyze the accuracy of the destination estimation.

a) Large Scale Metro Data Validation: As bus and metro
passengers have similar characteristics of travel and the desti-
nation of a metro trip is observable, we use large scale metro
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Fig. 10. The Accuracy of the D Estimation in Metro System.

Fig. 11. The Accuracy of the D Estimation in the Field Experiment.

data to validate our estimation model. Figure 10 gives the
result of 1.56 million trip samples in the metro system. We find
that the accuracy of the destination estimation using trip chain
model is about 83.3% and the accuracy of the estimation using
the probability assignment model is about 74.8%. The overall
accuracy is about 77.8%.

b) Small Scale Field Experiments: We then evaluate
the accuracy in bus system from small scale field survey.
We collect 100 trips of about 20 participants. These OD trips
are recorded. Result in Figure 11 shows that the proposed
estimation method in the experiments can get an accuracy
of 76%.

C. Evaluation of the Prediction

To evaluate the prediction, we firstly investigate the error
distribution of the Extended Kalman Filter. Secondly, we use
the estimation values both as input and evaluation reference
to compare 2RT P with several baseline prediction methods.

1) Error Distribution Analysis: Extended Kalman Filter can
be applied to nonlinear system where observation noises are
assumed to be gaussian white noise. So firstly to validate
the availability of EKF, we study the distribution of the
observation noise. Observation noise is the error between
coarse prediction and true estimation value. The distribution
of the error is shown in Figure 12, where we can see that
it approximately obeys Gaussian distribution. To tests the
randomness of error sequence, we study the autocorrelation
of the error sequence and test them using Q-Test. Figure 13
presents the autocorrelation of the error sequence. We can
see that the autocorrelation values are relatively very small
except the value at zero. The Q-Test result shows that at the
confidence level of 85%, it can accept the hypotheses that
the error sequence is white noise. Based on the above results,
we validate the availability EKF in the prediction.

Fig. 12. Distribution of the Observation Noise.

Fig. 13. Autocorrelation of the Error Sequence.

Fig. 14. The Prediction Error Comparison between 2RT P and Baseline
Models.

2) Prediction Results Analysis: We compare the prediction
accuracy of the proposed method with two baseline methods:

• ARIMA: The ARIMA model has been widely applied
in forecasting short-term traffic data such as traffic flow.
In ARI M A(p, d, q), parameters p, d , and q are the order
of the autoregressive model, the degree of difference, and
the order of the moving-average model. We choose three
common parameter combinations in the comparison.

• Linear Regression: We use different periods of historical
data to train the model. Each period has a linear regres-
sion model. After getting the parameters, we can predict
the passenger flow.

We compare the prediction error in 18 stations in two
directions in 10 different periods, which produce 18×2×10 =
360 sample points for each methods. Each plot of Figure 14
shows the comparison between the proposed 2RT P model and
one baseline method. The color temperature of the block (x, y)
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Fig. 15. The Prediction Errors in Different Stations.

Fig. 16. The Crowding Rate Prediction Errors in Different Stations.

TABLE II

THE RMSE OF DIFFERENT MODELS

in each plot represents the number of samples points whose
error is x with 2RT P model and y with the baseline method.
We can obviously see that a larger portion of sample points
locate above the diagonal y = x , which infers that the 2RT P
model has less prediction errors than the baseline methods.
The box-and-whisker plots in Figure 15 further show the
prediction errors distribution in the 36 stations. Again we can
see that the 2RT P model has less mean prediction errors in
most stations than the baseline methods. Moreover We also
find that except some fliers, the prediction errors with 2RT P
model in many stations are zero, which means the 2RT P can
predict the passenger flow accurately in many instances.

Thirdly, we use root mean square error (RMSE) to quantify
the error, as shown in Table. II. We can also see that the 2RT P
model outperform other baseline method in the the prediction
accuracy.

Practically, rather than the precise passenger flow, the pas-
sengers may care more about the crowding on the bus.
Therefore we rate the crowding based on the number of
passengers on the bus using K-Means. The crowding rate
reference is shown in Table. III. Then we evaluate the accuracy
of predictive crowding rate in different stations, which is

TABLE III

THE RESULT OF k-MEANS

illustrated in Figure 16. Results also show that 2RT P model
can predict the crowding rate more accurately than the other
models.

VII. CONCLUSION

In this paper, we present a system to analyze and predict
the passenger flow in real-time. The data input of the system
are the GPS trace and smart card payment records. We build a
model to fuse these two datasets to estimate the passenger flow
by deriving the origin and destination of passengers. We then
build a 2 Step Real-Time Prediction model that uses both
historical data and recent value to predict the future passenger
flow. Compared with existing prediction models that only use
historical data or recent value, the proposed 2RT P prediction
outperforms them in prediction accuracy in most time and
stations.
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