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Multi-view action recognition (MVAR) is an optimal technique to acquire numerous clues from different
views data for effective action recognition, however, it is not well explored yet. There exist several chal-
lenges to MVAR domain such as divergence in viewpoints, invisible regions, and different scales of
appearance in each view require better solutions for real world applications. In this paper, we present
a conflux long short-term memory (LSTMs) network to recognize actions from multi-view cameras.
The proposed framework has four major steps; 1) frame level feature extraction, 2) its propagation
through conflux LSTMs network for view self-reliant patterns learning, 3) view inter-reliant patterns
learning and correlation computation, and 4) action classification. First, we extract deep features from
a sequence of frames using a pre-trained VGG19 CNN model for each view. Second, we forward the
extracted features to conflux LSTMs network to learn the view self-reliant patterns. In the next step,
we compute the inter-view correlations using the pairwise dot product from output of the LSTMs net-
work corresponding to different views to learn the view inter-reliant patterns. In the final step, we use
flatten layers followed by SoftMax classifier for action recognition. Experimental results over benchmark
datasets compared to state-of-the-art report an increase of 3% and 2% on northwestern-UCLA and MCAD
datasets, respectively.

� 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The giant increase of surveillance cameras with variable scope
of installation including offices, public places, and roads, is a key
source of big video data generation. Exploiting this Big Data for
various tasks, such as video retrieval, video summarization [1], vio-
lence detection [2], and action recognition [3] are of keen interest
for researchers [4]. Human action recognition (HAR) refers to the
prediction of the action status of human in a given video and is
the center of concentration for many computer vision scientists,
due to its inclusive range of applications. Its applications consist
of surveillance, security and law enforcement, videos retrieval,
video summarization, and human–computer interactions [5].
Besides the wide range of applications, it has several challenges,
such as similar visual contents, viewpoint changes, variable tar-
gets, poses and scales of the action performers, and different illu-
mination conditions.
HAR domain is brodly divided into two broad categories based
on the number of cameras that capture the motion of the target.
The first is single-view action recognition, which has one camera
for moving targets and the second category is multi-view action
recognition (MVAR) comprising multiple cameras focused on the
target. There are a lot of approaches for single-view action recogni-
tion and deep learning based methods are particularly abundant
[6]. In contrast to single-view action recognition, MVAR is more
challenging, because the variation in the features from different
viewpoints and invisible regions of appearance in each view yields
poor classification results [6–8]. Many scientists proposed valuable
researches contributions in this domain with different feature
engineering approaches and effective classifiers. For instance, to
improve the performance of self-similarity based methods, Yan
et al. [9] proposed a multitask learning framework for MVAR. Their
framework has a special mechanism to share the self-similarity
matric among different views. The authors tested their method
over multi-view RGB and RGBD datasets to show better results
compared to the state-of-the-art methods. Baradel et al. [10] intro-
duced a visual attention module, which can learn to predict
glimpse sequences, that are further processed to achieve final
and distributed tracking/recognition results. They used an RGBD

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.12.151&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neucom.2019.12.151
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sbaik@sejong.ac.kr
https://doi.org/10.1016/j.neucom.2019.12.151
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


Fig. 1. The proposed MVAR framework using a conflux LSTMs network. Firstly, a
sequence of frames from each view is passed to the CNN model for frame level
features extraction. Secondly, the extracted features from each view are passed to a
self-reliant LSTMs network for sequence learning. Next, the outputs of all the LSTMs
are combined via view inter-reliant layers. Finally, the actions are recognized using
a SoftMax classifier.
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and a northwestern-UCLA multi-view action 3D datasets to prove
the validity of their system. Classifying human actions from dis-
tributed views is difficult due to huge appearance in variations of
different views. Liu et al. [11] considered the learning of discrimi-
nant view-invariant representations as a key to this problem,
which generalizes well over different views. They solved it through
the learning of view-invariant representations hierarchically using
their proposed concept of joint sparse representation and distribu-
tion adaptation. Their experiments over four multi-view datasets
outperformed the employed MVAR approaches. A novel concept
of dividing and aggregating a network (DA-Net) is presented in
[12] for MVAR that learns the independent view representations
to share among all the views at lower layers and single view-
specific representation for each view at higher layers. The view-
specific action classifiers based on each view representations are
used to predict how likely each video belongs to a respective view.
Finally, these predicted probabilities of the view-specific action
classifiers are used as weight and fused for final decision. Similarly,
many other approaches are presented for cross-view action recog-
nition based on various flavors of CNNs. For instance, Xiao et al.
[13] incorporated feature learning using their novel CNN model
on multi-view dynamic images. The dynamic images captured
from different cameras are processed via same convolutional lay-
ers, but their response is different to the fully connected layers.
The authors performed experiments on three challenging datasets
to prove its validity and better performance compared to the avail-
able techniques. An electromyography based MVAR framework
along with electromyography-vision action dataset is presented
in a recent paper [14]. A multi-view benchmark dataset for HAR
along with an evaluation of the different learning problems is pre-
sented in [15]. In this paper, the authors avoided the idea of train-
ing model on the source and utilizing it for targets with the
intuition that the meaning of each feature dimension is yielding
very different results, which were inconvenient. Finally, they used
multi-task learning to discover the common knowledge among the
underlying views for action recognition.

A keen observation and challenges of the current literature
revealed several limitations of the employed approaches that are
aimed to be addressed in the current research proposal. The first
challenge is the computation of the stable features across multi-
views, for which researchers have proposed attention modules,
joint sparse representation with distribution adaptation, and
multi-view dynamic images. However, these techniques are very
sensitive to the large-scale and viewpoint related changes in
multi-view data. Furthermore, all these techniques lack the prior-
ity of the appearance and motion information carried out in all
the views at once that is very important and necessary for the deci-
sion based on multi-view data. Similarly, MVAR literature is
deprived from techniques that can extract effective temporal infor-
mation and also retain the time complexity of the trained model as
low as possible.

To dominate the MVAR state-of-the-art results and contribute
to the action recognition literature, we introduced a conflux LSTMs
network based framework. Our proposed method is applicable for
RGB data, which has several advantages over other approaches,
such as skeleton data and many others. The major benefits for
using RGB data is its adaptability and availability, which is practi-
cal and easily implementable. The main idea of our framework is
the usage of view self-reliant and view inter-reliant processing
with parallel LSTMs for each view as visualized in Fig. 1. The key
contributions of this work are listed as follows:

1. The frame level representation is very crucial in video analytics.
For sequence learning in action recognition, it is important to
capture the tiny local changes in continuous frames. For this
purpose, we investigated the intermediate layers of a pre-
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trained VGG19 CNN model. After an in-depth analysis of all
the layers, we chose the Conv5_4 layer for features extraction,
which can effectively capture the local representation in an
image.

2. We proposed a conflux structure of LSTMs network, which has
separate LSTM for each view and processes the sequential fea-
tures obtained from the consecutive frames. This structure
allows our network to learn the view self-reliant sequential pat-
terns by processing single view data.

3. We exploited the view inter-reliant processing layers, which
find the inter-view correlations by fusing the self-reliant
sequences patterns via their pairwise dot product. The view
inter-reliant sequences are further processed by the fully con-
nected layers for effective action recognition.

The rest of the paper is organized as follows. The sequential fea-
tures extraction and the structure of the proposed conflux LSTMs
network are discussed in Section 2. The experimental evaluation
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and discussion about results are given in Section 3. Section 4 sum-
marizes the key findings of this article and recommends the future
research directions.
2. Proposed methodology

In this section, we discussed the implementation procedure of
the proposed conflux LSTMs framework for MVAR. First, we
acquire video data from multi-view cameras. Second, we forward
the sequences for frames from each view to the pre-trained
VGG19 CNN model to extract frame level features using our sug-
gested procedure from VGG19 intermediate convolutional layer.
Next, the view self-reliant LSTM network processes these features
and forward propagates it to the view inter-reliant network for the
final action classification. All the steps are subsequently discussed
in detail, the overall framework is visualized in the Fig. 1, and
mathematically presented in Algorithm 1.
Fig. 2. The features extraction mechanism, where a 7 � 7 average filter is applied
on the feature maps of a VGG19 CNN model to acquire the convolutional feature
vector for the frame level representation. There are 512 feature maps in the
Conv5_4 layer, so this mechanism generates a single representative value from each
map and generates a final convolutional featurevector.
2.1. Convolutional features extraction for sequence representation

CNNs are considered among the principal architectures to rep-
resent visual data effectively as compared to hand crafted features
representation techniques. The recent achievements of CNNs for
large-scale image classification [16], facial recognition [17], and
image retrieval [18] have encouraged the computer vision commu-
nity to exploit it for different domains of data in order to effectively
learn complex patterns. The hierarchical structure and its learned
kernels give them a powerful means to extract higher level of rep-
resentations from visual data. The hierarchy of layers allows the
neurons of each layer to learn the distinctive features. For instance,
the layers at deeper position in the CNN architecture learn more
complex and global features, which are known as fully connected
layers and are mainly utilized for recognition tasks. Likewise, the
initial layers are more sensitive to the local features because the
receptive fields of convolutional kernels cover only a tiny portion
of an image, which are essentially utilized for dynamic nature fea-
tures representation tasks. In terms of video data, the global infor-
mation in continuous frames change very slowly, so the fully
connected layer gives almost the same features for the successive
video frames as it extracts global higher-level abstractions. On
the other hand, the consecutive frames have a lot of local motion
dynamics, which can be easily captured via convolutional features,
because its kernels convolve a small respective field of image.
Therefore, we have utilized the convolutional features for frame
level representation in the proposed MVAR framework.

The convolutional layers are considered as the backbone of deep
CNN models, because they learn sharp and tiny 2D patterns in an
image via the different sizes of kernels. We have encountered
many recent studies, which utilized the convolutional layers in
image representation for various computer vision applications that
include image retrieval [19], fire detection and localization [20],
shot segmentation [21], and action recognition [3]. For instance,
Jamil et al. [19] presented a framework for object-oriented features
selection from convolutional maps of a pre-trained CNN model for
image retrieval. In addition, Zhou et al. [22] presented a framework
for object detection, which showed that the combination of differ-
ent feature maps can be utilized for object detection. Similarly,
Khan et al. [20] utilized convolutional feature maps for fire detec-
tion and localization. These researchers have claimed that the con-
volutional features are dominant over the fully connected layer
features and it is also evident from fact that famous ResNet and
MobileNet CNN models avoided fully connected layers in their
architectures. In this study, we investigated the convolutional layer
of a pre-trained VGG19 [23] CNN model for frame level represen-
tation in MVAR task. The VGG19 has a five-level hierarchy of con-
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volutional blocks, each block consists of multiple convolutional
and pooling layers, which aim at achieving effective patterns learn-
ing from image data. We utilized the final layer of block five (Con-
v5_4) of the VGG19 CNN model that covers the largest receptive
field of an image and assembles feature maps to represent the
abstraction of the whole image. The convolutional features can
be extracted for feature maps as formula given in Equation (1).

CF Kð Þ ¼ 1
w:hð Þ

Xw

i¼1

Xh

j¼1
FMK i; jð Þ ð1Þ

The final layer of block five has 7 � 7 � 512 feature maps, which
are fed to Eq. (1), where CF Kð Þ is the convolutional feature vector, K
is the index of feature maps FM, w is weight, and h is the height of
FM. Also, the mechanism is given in Fig. 2. We acquired a 512-
dimensional feature vector for a single video frame. In the pro-
posed framework, we processed a sequence of 15 frames parallel
from each view for the MVAR. Therefore, 7680-dimensional feature
vector is fed to our conflux LSTMs network for sequence learning
from each view.
2.2. View self-reliant network

In this section, we explain the structure of the proposed conflux
LSTMs network and its effectiveness in terms of sequence learning
from multi-view data for action recognition. As in a multi-view
cameras scenario, the data is captured from different angles, so
each view has different visual information. For instance, if a person
is performing an action in front of different cameras, so the camera
with his frontal orientation will have the most important visual
information [1]. Therefore, keeping this fact in our minds and dif-
ferent from state-of-the-art, we first individually processed each
view data to learn the action patterns that we termed as view
self-reliant network, and then finally combined all the clues col-
lected from each view for action recognition. The LSTMs are more
powerful than the feed-forward neural networks for learning para-
metric and structural patterns to build a sequential model. It can
process the arbitrary sequences of the time series input and exhi-
bits a dynamic behavior by committing previous information to its
memory and using it for final output based on the maintained his-
tory. Moreover, it has the ability to capture the intricate interac-
tions between neighborhood space through its hierarchical
hidden layers structure [24]. Furthermore, the recent studies on
LSTMs have proven that its multilayer and bidirectional structures
are more effective in terms of long terms sequence learning prob-
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lem. However, this type of structure increases the time complexity
of networks and are not applicable for real-time applications.
Therefore, keeping all these facts in our mind, we proposed a mul-
tilayer LSTM structure for each view in self-reliant network. The
configuration details of different layers of our conflux LSTMs net-
work are given in Table 1.

Our network takes visual features extracted from consecutive
frames {f 1; f 2; f 3; f 4; � � � ; f ngusing a CNN model for each view
{V1;V2;V3;V4; � � � ;Vng and assumes that all cameras are synced
while capturing images. The network has {L1; L2; L3; L4; � � � ; Lngmul-
tilayer LSTMs, where Li 2 Vi and results in sequence to sequence
output. The multilayer LSTM structure for each view learns
multi-view independent sequential patterns. The detailed explana-
tion about the structure of LSTM is out of scope of this paper, but it
is important to discuss the structure of our multilayer LSTM. For
each Li 2 L, we have three layers stacked LSTM fl1; l2; l3g 2 Li. The
lj contains 256 memory cells, takes a 512-dimensional feature vec-

tor, and outputs a sequence equal to length of memory cell
2

� �
. The output

sequence from lj is further processed by the view inter-reliant net-
work for MVAR.
2.3. View inter-reliant network

After the supplementary patterns learning through the view
self-reliant LSTMs, it is important to capture the higher-level
dependencies in multi-view sequences in conjunction. Due to the
overlapping locations and the fields of view of different cameras,
there is a huge amount of correlations in the multi-view data.
Therefore, exploiting these correlations play a significant role and
work as strong recognition clues from each view. Furthermore,
these correlations and inter-dependencies between them need to
be accurately modeled for effective MVAR. Our view self-reliant
network outputs representative sequences {S1; S2; S3; � � � ; Sng for
each of the view data, which contain strong correlations that are
sought out by our view inter-reliant network in conflux LSTMs set-
tings. The inter-view correlation between the two feature vectors
has been investigated by plenty of researchers. For instance, Panda
and Roy [25] utilized multi-view embeddings to capture the multi-
view correlations using sparse coefficients. Similarly, Hussain et al.
[1] presented a novel idea of lookup table, which stores frames
from multiple views in a synchronous manner, which thereby
helps their system to avoid extra processing for correlations calcu-
lation. A well-known FlowNet [26] CNN model utilized multiplica-
tive patch comparisons for correlations analysis in optical flow
generation between two consecutive feature maps. Inspired from
the idea of FlowNet, we also utilized pairwise dot product of fea-
tures maps for correlations computations between sequential fea-
tures of multiple views.
Table 1
The configuration of our conflux LSTMs network, which summarizes the input and
output dimensions for each view LSTM and the number of trainable parameters in the
network.

Layer Dimensions No. of parameters

Input k15 512 k � 3 –
LSTM (View1) k512 256

256 128 k � 3 2,286,276

LSTM (View2) k512 256
256 128 k � 3 2,286,276

LSTM (View3) k512 256
256 128 k � 3 2,286,276

Correlations k128 128 128 k –
FC 1 k1� 128k 16,384
FC 2 k1� 64k 4,096
FC 3 k1� 18k 324
SoftMax kno of classesk 6,817,220
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In our conflux network, we employed a correlation layer that
performed the pairwise dot product between the representative
sequences of multi-view data. In this layer, the view self-reliant
sequential features are convolved with the features of other
sequences instead of convolving it with kernels, as in typical con-
volutional layer of NNs. For instance, we have n dimensions
multi-view sequences {S1; S2; S3; � � � ; Sng , for which our correlation
layer compares a feature point of S1and S2. Let us consider a ‘c’ cor-
relation comparison of feature point SV1

i with n multi-view
sequences as

c S1; S2; � � � ; Snð Þ ¼ hðSV1
i Þ; ðSV2

i Þ; � � � ðSVn
i Þ þ oi ð2Þ

where S represents the sequence from each view, ‘i’ is the index of
feature point to be compared, and ‘o’ is the bias unit. This layer out-
puts one dimensional representation for all the views, which is fur-
ther processed via fully connected layers for MVAR task. We have
used the configuration given in Table 1 for three views data, which
represents separate LSTM network for each view.

Algorithm 1: Conflux LSTMs Network

Input: Multi-view video streams {V1;V2;V3;V4; :::;Vng
Output: Predicted action class along with the probability

score
Preparation:
1. Acquire synchronized multi-view frames
2. Load pretrained VGG19 CNN model M1

3. Initialize trained Conflux LSTMs network M2

Steps:
while (video frames ({V1;V2;V3;V4; :::;VngÞ)
1. Read frames  {f i 2 Vjgs
2. Forward f i 2 Vn frames to M1

3. FM  M1

4. Apply 7 � 7 average pooling to FMK for frame level visual
features extraction using Eq. (1).

5. Repeat step 2, 3, and 4 for sequence of frames of Vn.*note:
sequence length in our experiments is 15

6. Combine frame level sequential features Fv from
{V1;V2;V3;V4; :::;Vng

7. Labeled action class  Forward propagate Fv to M2

8. Show predicted action along with probability score
end while

The LSTMs structure is deeply discussed in the view self-reliant net-
work. Our view inter-reliant network depends on the output of cor-
relation and the fully connected layers. We stacked three fully
connected layers with 128, 64, and 18 dimensions after the correla-
tion layer, which captured the higher-level abstraction from multi-
view data for combined action recognition. The conflux LSTMs net-
work has total 6.8 million parameters for three views data. The
higher is the number of views in the conflux network, higher will
be the network size and computational complexity. Also, the accu-
racy of the network varies by changing the number of views and
from the experiments we observed that the effectiveness of the net-
work depends on the overlapping invisible regions and the different
scales of human appearance from the camera.

3. Experimental results and discussion

In this section, we discussed different experiments performed
using MCAD [27] and northwestern-UCLA [28] MVAR benchmark
datasets for the evaluation of our conflux LSTMs network. We
investigated our method for overall recognition accuracy, the con-
fusion matrix, the class-wise performance, the trained deep learn-
ing model size, and the time complexity of our network in different



A. Ullah, K. Muhammad, T. Hussain et al. Neurocomputing 435 (2021) 321–329
multi-view scenarios. We also compared our results with state-of-
the-art and discussed some scientific reasons for the dominance of
our network. The experiments of the proposed conflux network
were performed in Python 3.5 with the deep learning library
Tensorflow-1.12, installed over Ubuntu-16.04. The hardware
equipped for the experiments contained a CoreTMi5-6600 proces-
sor with 16 GB RAM and supplied with the support of a dedicated
12 GB GeForce-Titan-X GPU.

3.1. Multi-camera action dataset (MCAD)

The mainstream action recognition datasets are created for dif-
ferent purposes based on the applications and the purpose, such as
sports and entertainment actions, consumer generated actions, and
surveillance datasets. However, the multi-camera action is recog-
nized from surveillance data that is captured through multiple
cameras in a CCTV environment. In an MCAD dataset [27], the
videos are recorded using five cameras that are installed with dif-
ferent angles to capture the overlapping areas. It has two types of
camera settings, which include the static and the pan-tilt-zoom
cameras. There are three static cameras with fisheye, which
include Cam04, Cam05 and Cam06, and two pan-tilt-zoom cam-
eras, which include PTZ04 and PTZ06. The resolutions of the static
and the PTZ cameras are 1280 � 960 and 704 � 576, respectively.
Moreover, the contrasting effect is added as day and night. A total
of 18 actions are recorded by 20 recruited individuals, where each
individual repeats the action 8 times, such as 4 times during the
day and 4 times during the evening. It mainly has two types of
actions, such as single-person action and person-to-object action.
It is a more challenging dataset because out of the five cameras,
the two moving and zooming cameras data increase the viewpoint
changes and create scaling issues in sample.

3.2. Northwestern-UCLA multi-view action 3D dataset

This dataset [28] is recorded with three simultaneous Kinect
cameras by the University of California and Northwest University
in Los Angles. The settings used for its recording are same as the
Multiview 3D Event dataset, but multiple locations are added. It
comprises of RGB, depth and human skeleton data of 10 action cat-
egories performed by 10 individuals, captured from different view-
points. In this paper, we utilized only RGB data of the dataset for
MVAR. The action categories include pick up with one hand, pick
up with two hands, dropping the trash, walking around, doffing,
throwing, and carrying. The visual contents of all categories are
very similar and the data is recorded in same background, which
make it very challenging. We observed that the only discriminative
sequential features, which can be helpful in a challenging environ-
ment is the motion of human body parts that are effectively cap-
tured in the proposed framework using the local convolutional
features.

3.3. F. Training process and parameters selection for conflux LSTMs
network

The proposed conflux LSTMs network acquire features from the
pretrained CNN model. We investigated features extracted from
the fully connected layer and the intermediate convolutional fea-
tures of CNN. The sequence length for the conflux LSTMs is 15 con-
secutive frames that is selected after observing its effectiveness
and the time complexity analysis of the 30, 25, and 15 frames
sequences. Considering 15 frames per sequence using the fully
connected layer deep features, our network takes 1000-
dimensional features vector at a time step ‘t’ of conflux network
and using the convolutional features, it takes 512-dimensional
input. The experiments are performed using LSTM with 512 and
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256 memory cell sizes, where the optimal selected size is 256 in
order to have a lower computational complexity, because the con-
flux LSTMs network has three-layered stacked LSTMs for each
view, and 512 cell size increased the processing time exponen-
tially. The learning rate is a very important factor, which we initial-
ized from 0.01 and after 250 iterations, we reduced it to 0.001, and
the stochastic optimization function was used for cost minimiza-
tion. The datasets are formed as 60% for training and 20% for each
validation and testing set of the conflux LSTMs network. The per-
formance of our network during training process is illustrated in
Fig. 3. It can be observed from the Fig. 3 that the convolutional fea-
tures of Covn5_4 have effective results as compared to the deep
features of FC8 layer. The deep features are an abstract representa-
tion of the frame that cannot capture the slight changes between
consecutive frames. On the other hand, the convolutional features
are very effective in terms of local changes representation, so its
validation accuracies are much higher compared to deep features.

3.4. Closed set, open set, and class-wise evaluation

The closed set and the open set are very useful evaluation met-
rics to know the robustness of a trained AI model. Nevertheless, the
mains stream AI methods only follow the closed set evaluation
where the test samples are separated from the training data, even
though the test samples are collected from the same environmen-
tal settings as the training data. On the other hand, in the open set
evaluation the test set is totally different from the training set, and
it is collected from different scenarios. In this study, we have
assessed our conflux LSTMs network through both closed and open
sets. For the closed set, testing samples are separated from the
same multi-views data as training, but we trained our model on
one view and tested using another view data for the open set.
For instance, our conflux LSTMs take at least two views input data,
so for closed set, we inputted three views data for the training and
separated 20% for testing from the same views. However, for open
set we trained on view 1 and view 2 and tested on view 3 and view
4. The confusion metrics for closed set are given in Fig. 4 and the
open set are illustrated in Fig. 5. It can be seen from Fig. 4 that
for the closed set the true positive intensities are higher for almost
all categories of both datasets. However, in Fig. 5(a), the open set
shows that the results are reduced a little bit, because the model
encountered a completely novel type of data, which was not used
during training and the model is confused in the walk around and
carry classes. We got a 90.1% overall accuracy for the closed set and
88.9% for the open set on northwestern-UCLA. Similarly, for on the
MCAD dataset, we achieved 80.3% accuracy for the closed set and
86.9% accuracy for open set. The class-wise performance by our
conflux LSTMs network for northwestern-UCLA dataset is given
in Fig. 6(a) and for the MCAD dataset is illustrated in Fig. 6(b). It
can be seen from Fig. 6(a) that the bars of all the classes give a bet-
ter performance and are mostly higher than 70%. The stand up,
donning, and doffing classes have all crossed 90%. However, the
sit-down class only reached 55% and the reason is very clear from
Fig. 4(a) where in confusion matrix, the sit-down class is confused
with the standup class.

3.5. Comparison with the state-of-the-art

The proposed conflux LSTMs network is extensively compared
with the state-of-the-art methods via the results of different views
and the overall accuracy. Table 2 illustrates the comparison with
the depth, the pose, and the RGB based methods for the
northwestern-UCLA multi-view action dataset. This dataset has
only three views, for which the researchers formed an experimen-
tal setup, where they trained a model with V1 and V2 and tested it
with the V3 data. However, the proposed network processed at



Fig. 3. The validation accuracy and loss achieved at each epoch during the training process of the conflux LSTMs network for (a, b) the MCAD and (c, d) Northwestern-UCLA
Multi-view actions datasets.

Fig. 4. The confusion matrix for the closed test set of (a) the northwestern-UCLA dataset and (b) MCAD dataset. The bar line displays the accuracy range from 0 to 100 where
the classes that achieved a brighter color on its diagonal has better results, and the ones that are closer to a dark color are confused with other classes.
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least two views and we cannot forward propagate single view to
the network, so we therefore performed the training with V1 and
V2 and testing with V2 and V3. It can be seen from Table 2 that each
training and testing gave outputs with different accuracies. In the
depth based methods, the 3D viewpoints [31] achieved 91.9% accu-
racy for setting one, but it got 75.2%, 71.9%, and 79.7% accuracies
for setting two, three, and average performance, respectively. The
pose based methods performed their experiments using setting
one, where the temporal sliding LSTM [34] obtained highest accu-
racy of 89.2% and a view invariant HAR [33] and a Hierarchical RNN
[32] achieved 86.1% and 78.5% accuracies, respectively. The RGB
based methods achieved varying accuracies for each view settings
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where the glimpse clouds [10] obtained 90.1% highest accuracy
with setting one and the proposed conflux LSTMs network
obtained highest accuracies of 92.5% and 88.6% for settings two
and three, respectively. The proposed method also reached the
high average performance for all the settings reaching 88.9%. The
proposed network has good performance for all the settings,
because multi-view data is processed parallelly where it first gets
the view self-reliant features and then view inter-reliant features
which help our model to learn the features of all the views scenar-
ios for effective MVAR. The comparison using the overall recogni-
tion accuracy for northwestern-UCLA and MCAD datasets is given
in Tables 3 and 4. The proposed conflux LSTMs network has out-



Table 3
Comparison with state-of-the-art methods using the overall recognition accuracy of
the northwestern-UCLA multiview-3D dataset.

Method Accuracy (%)

MST-AOG w/o Low-S [28] 65.3
MST-AOG w Low-S [28] 73.3
HOPC [37] 80.0
Multi-view dynamic images + CNN [13] 84.2
Conflux LSTMs network 88.9

Table 4
Comparison with state-of-the-art methods using
the overall recognition accuracy of the MCAD
dataset.

Method Accuracy (%)

IDT [38] 84.2
Covariance matrices [39] 64.3
STIP [27] 81.7
Cuboids [27] 56.8
Conflux LSTMs network 86.9

Fig. 5. The confusion matrix for open test set of (a) the northwestern-UCLA dataset and (b) the MCAD dataset.

Fig. 6. Class-wise performance of the proposed conflux LSTMs network on (a) the northwestern-UCLA dataset and (b) the MCAD dataset.

Table 2
Comparison of the proposed conflux LSTMs on the northwestern-UCLA multi-view action dataset via different view (V) settings with depth, pose, and RGB based methods,
respectively.

Data Methods Train Test Train Test Train Test Average
V1 & V2 V3 V1 & V3 V2 V2 & V3 V1

Depth Virtual views [29] 58.5 55.2 39.3 51.0
Virtual path [30] 60.6 55.8 39.5 52.0
3D viewpoints [31] 91.9 75.2 71.9 79.7

Pose Hierarchical RNN [32] 78.5 – – –
View invariant HAR [33] 86.1 –s – –
Temporal sliding LSTM [34] 89.2 – – –

RGB 3D pose motion [35] 68.6 68.3 52.1 63.0
Knowledge transfer model [36] 75.8 73.3 59.1 69.4
Glimpse global model [10] 85.6 84.7 79.2 83.2
Glimpse clouds [10] 90.1 89.5 83.4 87.6
Conflux LSTMs network Train Test Train Test Train Test

V1 & V2 V2 & V3 V1 & V3 V2 & V3 V2 & V3 V1 &V3

85.7 92.5 88.6 88.9
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performed state-of-the-art on both datasets. It improved 5% on
northwestern-UCLA dataset, reaching 90.1% from 84.2%, which
was previously achieved by [13]. Similarly, on MCAD dataset our
model improved 3% accuracy from the level previously achieved
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by IDT [38]. The results above discussed indicate a better perfor-
mance and robustness of our conflux LSTMs network in any sort
of multi-view cameras settings.
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4. Conclusion and future work

In this paper, we introduced a novel concept of conflux LSTMs
for MVAR. It is a challenging area of research with several applica-
tions that range from daily life surveillance to the monitoring of
cities. Our framework incorporates several LSTMs in a network to
recognize action from multi-view cameras. There are four major
steps in our framework, which include (1) preprocessing, (2) a con-
flux LSTSMs network for view self-reliant patterns learning, (3)
inter-view correlation computation for view inter-reliant patterns
learning, and (4) action classification. In the first step, we passed a
sequence of frames to the CNN model and extracted a 1 � 512 fea-
ture vector from an intermediate convolutional layer. The feature
extraction from the convolutional layer is more advantageous
and robust for our problem due to the slight changes in the
frame-level features from the fully connected layers. In the second
step, these features are inputted to the LSTMs network to compute
the view self-reliant patterns. The inter-view correlations among
the different views are very important for MVAR. Therefore, we
computed the inter-view correlation in the third step by taking
the pairwise dot product from the output of the LSTMs network
respective to each view. Finally, we classified the underlying action
through a SoftMax classifier by passing the features of the flattened
layers of our conflux LSTMs network. The experimental results
compared to the recent state-of-the-art methods are dominating,
proving that our framework can be helpful in many real-time
applications.

The multi-view data is of very high dimensions and processing
it via deep architecture leads to high computations. In the future,
we want to replace our features extraction model with an alterna-
tive light-weight model to have faster computations and with
intention of presenting a more optimal conflux structure for the
MVAR. We also want to try embedded programming [40] in order
to transform our framework into a resource-constrained device
that can be fitted anywhere for better MVAR. Furthermore, we will
also consider other sensors data [41–43] along with vision data by
developing some fusion mechanism for effective action
recognition.
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