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Multimodal data fusion is a critical element of fall detection systems, as it provides more comprehensive
information than single-modal data. Yet, data heterogeneity between sources has posed a challenge for the
effective fusion of such data. This paper proposes a novel multimodal data fusion method under a federated
learning (FL) framework that addresses the privacy concerns of users while exploiting the complementarity of
such data. Specifically, we fuse time-series data from wearable sensors and visual data from cameras at the
input level, where the data is first transformed into images using the Gramian Angular Field (GAF) method.
Moreover, each user is treated as a private client in the FL system whereby the fall detection model is trained
without requiring the sharing of user data. The proposed method is evaluated using the UP-Fall dataset, where
we perform different fall detection tasks: binary classification for fall and non-fall detection yields a remarkable
accuracy of 99.927%, while multi-classification for different fall activity recognition attains an accurate result

of 89.769%.

1. Introduction

Over the past few decades, the Internet of Medical Things (IoMTs)
has evolved significantly with technologies that provide many benefits
for people’s health and safety. The deployment of sensor devices in
IoMTs has become commonplace, with devices such as wearable de-
vices, cameras, and various clinical instruments providing a diverse and
vast amount of data for medical diagnosis [1]. IoMTs bring convenient
medical services and enable remote monitoring of patients’ conditions
through real-time data collection from sensor devices. On the other
hand, machine learning (ML) is a powerful tool for data analysis thanks
to its ability to capture hidden relationships between data. Nowadays,
ML is increasingly integrated into IoMTs, bringing a reliable means of
support for disease prevention and diagnosis, and greatly contributing
to the development of healthcare [2].

Among the many studies on condition detection related to IoMTs,
fall detection is a task of great importance [3]. In particular, for special
populations such as the elderly, children, and pregnant women, falls
can often lead to serious consequences, including disability and even
death. According to the World Health Organization (WHO), falls are
the second leading cause of death from unintentional injuries world-
wide [4]. It is widely recognized that in addition to exercising caution
to prevent falls, timely detection and alerting when a fall occurs is
particularly crucial. To this end, a variety of sensor devices, such
as wearable devices, smart bracelets, and indoor cameras, have been
deployed in IoMTs, producing real-time data on human activities. By
analyzing these raw sensor data with ML, a reliable and convenient
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fall detection system can be developed, offering enhanced security and
peace of mind to individuals.

While a number of fall detection systems are available, many
of them rely solely on single-modal data [5]. However, the limited
amount of information contained within single-modal data impacts the
precision of the detection systems when compared to those based on
multimodal data. Multimodal data-based systems have shown improved
performance on account of researchers fusing data from sources, such
as accelerometers and gyroscopes [6], which has helped to provoke
thought towards the implementation of data fusion. Despite being
different in nature, time-series data and visual data from cameras
and wearable devices have also been fused together by some re-
searchers [7]. This provides complementary information that can be
leveraged to further enhance the accuracy of fall detection systems.
Studies have shown that fusing multimodal data as input can consid-
erably improve fall detection accuracy. It is worth noting that when
fusing multimodal data for fall detection, the first task is to consider
how the data is fused. In general, multimodal data fusion can be
divided into three types: input-level fusion (data-level fusion), feature-
level fusion, and decision-level fusion [8], see Fig. 1 for illustration.
Regarding the feature-level fusion, in Martinez et al. [9], manual
features — such as mean or standard deviation — were extracted from
the original data and merged together for use in ML-based fall detection
methods. Those methods include Random Forests (RF) [10], Support
Vector Machines (SVM) [11], Multi-layer Perceptron (MLP) [12], and
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Fig. 1. Types of data fusion in classification tasks.

k-Nearest Neighbors (k-NN) [13]. This feature fusion method has some
limitations because the extraction of manual features may lead to the
loss of important information in the data. Islam et al. [14] used two
different neural network (NN) branches to extract features of the two
modal data separately and performed feature fusion on this basis, but
this method also led to the overall complexity of the NN model. In
the decision-level fusion, [15] proposed a decision-level data fusion
method in which the data of each modality is classified as the input of
a separate sub-NN, and the final decision of which classification model
wins is made by a majority voting system. However, this approach
highlights the competitive nature of the models and does not take full
advantage of the complementary nature of multimodal data. Among
the data fusion approaches, input-level fusion of multimodal data is
not as developed due to the challenge of fusing data with different
morphologies. However, this fusion method has the ability to preserve
more information within the data than other methods such as feature-
level or decision-level fusion. As a result, there is a pressing need for the
development of effective input-level fusion methods to fully capitalize
on the benefits of retaining higher amounts of preserved information
in heterogeneous multimodal data. Such efforts would be of significant
research value.

In recent years, countries around the world are paying more and
more attention to citizens’ privacy and information security, and it is
necessary to take responsibility for privacy protection while developing
data fusion in IoMTs [16]. Federated learning (FL) has become a learn-
ing paradigm favored by researchers because of its stronger privacy
protection compared to traditional ML [17]. In general, in FL, there
exists a server responsible for the coordination, with multiple clients
carrying local data. FL is an emerging learning paradigm in the past few
years, which is radically different from traditional data-centralized ML
because of its collaborative server—client training model. In traditional
data-centric ML, a large amount of user data is collected for model
training, which poses a significant threat to user privacy. However, in
FL, data is distributed across different clients, which range from small
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mobile devices to large organizations. Generally, in FL, there is a server
responsible for coordination and multiple clients hosting local data. The
clients do not share data among themselves, but only perform local
gradient updates based on their local data, and then perform model
updates with the server, such that the collaborative training yields the
final desired model. The learning process is as follows: first, each client
downloads the latest global model for initialization and performs local
training on the local data; then, the clients upload the latest local
model to the server; finally, the server performs model aggregation
and updates the global model. The above steps are repeated until the
model reaches the required accuracy [18]. A general framework for
FL is shown in Fig. 2. As in FL the models rather than raw data are
shared, the privacy of the data is preserved. The application of FL to
fall detection to protect user privacy is of great practical importance.

To the best of our knowledge, no previous research work has
combined multimodal data fusion with user privacy protection for fall
detection. Therefore, this paper proposes a method that fuses mul-
timodal data at the input level within a FL framework. The aim is
to create a fall detection system that is efficient and preserves user
privacy. First, to protect users’ privacy from disclosure, each user acts
as a separate client in the federated system. Each client has a local
data fusion module for multimodal data fusion to generate local data
for training. In the data fusion module, the time series data from
the wearable sensors are converted into images using the Gramian
Angular Field (GAF) method; the GAF images are then fused with the
visual data from the cameras. Second, each client performs local model
training based on local fused data, and then the server performs model
aggregation to complete the training of the global model. The local
model is a simple 3-layer CNN in order not to cause a communication
burden in FL. Finally, experimental evaluation on the UP Fall dataset
shows that our proposed model combines fall detection capability with
privacy preservation.

The novelties of the proposed method in this paper are as follows.
First, using FL as the relying framework, the security and privacy of
the data are fully considered. Most of the previous studies about fall
detection are based on traditional DL, which undoubtedly leaks user
privacy. In traditional DL, users need to upload their activity data
to the data center for model training. These data record users’ facial
and physical characteristics, and the consequences of leakage can be
imagined. Second, this paper achieves the fusion of time series data
and visual data at input-level with the aim of maximizing the retention
of data information. Previous studies on multimodal data fusion are
often based on feature- or decision-level fusion, leading to a lack of
raw information. This paper is the first to introduce input-level data
fusion into the field of fall detection.

The main contributions of this paper are as follows:

(1) A method for fusing input-level data is proposed, which combines
1D time-series data with 2D visual data to achieve information
complementarity.

(2) A user privacy-preserving FL framework is proposed to ensure
data security.

(3) The effectiveness of the proposed method for fall detection is
illustrated by experimental results on the UP Fall dataset, demon-
strating that multimodal data fusion enhances fall detection per-
formance when compared to single-modal data.

The rest of the paper is structured as follows. Section 2 presents
related works, including data fusion and FL in fall detection. Section 3
introduces the proposed framework, explaining in detail the data fusion
approach and the FL setup. Section 4 shows the evaluation experiments,
including the dataset and experimental setup, and the analysis and
discussion of the experimental results. A summary of the full paper is
presented in Section 5.
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Fig. 2. A general framework for FL.

2. Related works

This section presents recent research on fall detection from two
perspectives. Firstly, various approaches based on data fusion in fall
detection are discussed. Secondly, the increasing use of FL in fall
detection is examined. These works are discussed in Section 2.1 and
Section 2.2, respectively.

2.1. Data fusion in fall detection

Focusing on the research topic of fall detection, several researchers
have tried to improve the accuracy of detection through data fusion
schemes. We review and discuss these data fusion proposals in three
aspects: input level, feature level, and decision level.

In previous research work on fall detection, input-level fusion was
mostly based on single-modal data rather than multimodal, because the
heterogeneity of the data posed some challenges for fusion. In [19],
Auvinet et al. fused 2D contour projections from multiple cameras to
reconstruct the 3D volume of the human body. Based on this fusion
method, a threshold detection method is used to determine whether a
fall has occurred. This method can simulate real scenes better compared
to 2D image data, but the data is only visual. It does not make use of
other modal data, which may lead to the problem that the reconstructed
3D model is not fine enough. In [20], Xie et al. used an input-level
fusion method to classify the UP Fall dataset for fall events. This was
done by first extracting the human skeletal sequences from the RGB
images and then fusing five points of the face into one key point. This
method has the advantage of simplicity but does not explore the fusion
of multimodal data.

Many research works fuse features extracted from the data, which
can be further classified into manual feature-based and NN-based fea-
tures. In [21], Cai et al. combined acceleration from the pose sensor,
with the human skeleton sequence extracted from the video. After
fusing the extracted features such as standard deviation, and maxi-
mum minimum value, the GBDT algorithm was used for fall action
classification. The performance of the scheme is verified in comparison
with algorithms such as SVM and NN. Similarly, in the articles [22,23],
manual features were selected for fusion, but the subsequent classifi-
cation task was performed by a bidirectional long short-term memory
(Bi-LSTM) or convolutional neural network (CNN) network. In [24],
the authors used infrared sensors to collect different fall movements of
the human body. After fusing the variation values of features such as
the center of mass, velocity, and body area, SVM is used for fall clas-
sification. All the above research works involve the fusion of manual
features, but the selection of features is relatively dependent on the
researcher’s experience. The features extracted based on NNs are less
experience-dependent than manual features. In [25], the authors pro-
posed a fall detection method based on radar signals. The method fuses

features extracted from three signal maps by three NNs separately to
recognize multiple fall actions in real scenes. The proposal exploits the
privacy-preserving nature of radar signals, but a single temporal signal
may not carry as much information as multimodal data. Amsaprabhaa
et al. [26] used two NNs, spatiotemporal graph convolutional network
(STGCN) and 1D-CNN, to generate two sets of features for human
skeleton sequences. After cascade fusion of the features, fall prediction
was performed. The two different NNs can extract diverse features, but
the method is still based on only a single visual data, which may lead
to misclassifying a fall-like action as a fall.

Decision-level data fusion approaches appear in several research
efforts. In [27], Yi et al. designed a practical fall detection application
that monitors heart beat rate, acceleration, and body temperature to
synthetically assess falls and initiate alerts via a smartphone program.
The application only differentiates the fall direction and may not be
able to identify the severity of different fall postures. De et al. [28]
proposed a two-channel decision-level data fusion method for fall
detection on the UR Fall dataset. In this method, for the data from
the camera, one channel performs threshold-based classification of the
aspect ratio of the human silhouette, and the other channel performs
classification of key frames using the k-NN algorithm. The results of
the two channels are then evaluated together to determine whether
a fall event has occurred. This method analyzes only visual data and
does not involve multimodal data. It is worth noting that decision-
level data fusion essentially analyzes data from different single-modal
separately and then discriminates between the classification results,
which does not take advantage of the complementary information of
different modal data.

As seen from the above-related research works, there is still room
for exploring the input-level fusion of multimodal data in fall detection.
Moreover, compared with feature-level and decision-level fusion, input-
level fusion can fully retain the information carried by different modal
data and help to enhance the accuracy of fall event detection.

2.2. FL in fall detection

In recent years, FL has become an irreplaceable paradigm and
increasingly active because of its unique privacy-preserving properties.
With the increasing awareness of data protection, there have been
several research works on fall detection based on FL [29,30].

In [31], the authors designed a privacy-preserving enhanced FL
framework for fall detection experiments on acceleration in the UP
Fall dataset. The carefully designed cryptosystem in this framework
has good privacy-preserving features and does not lead to excessive
communication consumption. However, to prevent the negative impact
of non-independent identical distribution (non-iid) of client data, each
client must also upload a portion of data during the local model upload
phase. This practice actually defeats the original purpose of FL, which
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The following table reports the main findings of the reviewed literature relating data fusion and FL in fall detection.

Papers Multimodal Data fusion FL Contributions Limitations

[19,20] X v X Input-level data fusion provides The data used for fusion have the same
convenience subsequent fall detection modality and the systems lack users’
tasks. privacy protection.

[21,22,22-24] v v X Feature-level data fusion helps for The features are manually extracted, and
improving the accuracy of fall detection. how to choose depends on the

experience of the researcher. Lack of
users privacy protection.

[25,26] X v X Feature-level data fusion helps for The features used for fusion come from
improving the accuracy of fall detection. the same modality and the systems lack

users’ privacy protection.

[28] v v X Data Fusion at decision Level. Lack of users’ privacy protection.

[31-35] X X The importance of protecting user The data used are single modality and
privacy is considered, and FL is utilized could not provide complementary
to achieve the purpose. information.

[36] v X v Representation of multimodal data is Data fusion was not achieved and could
realized in FL, and user privacy is not provide complementary information.
protected.

Ours v v v Multimodal data fusion at the input

level provides information
complementation, and the FL-based
system effectively protects users’ privacy.

is not to share data among clients. In particular, the non-iid of data
is an ongoing problem with FL, due to the fact that different clients
usually have different data distributions, which is a major difference
between FL and traditional data-centralized ML. A FL framework based
on channel state information is proposed in [32], and the experimental
results are comparable to the centralized model. However, in that
experiment, the authors did not consider the non-iid setting of the data.
In [33], the authors used manual features of acceleration data as input
to the local model to detect falls. This FL framework incorporates an
extreme learning machine for improving the performance of the global
model. The articles [34,35] both proposed a FL framework for home
health care, and indicated that the proposed framework achieved good
results in fall detection. The above-mentioned research works show that
FL is practical and privacy-preserving for fall detection, but they are all
based on data from a single modal. In [36], the authors propose a FL
approach to handle multimodal data for fall detection without sharing
the original data or the representation space of the data. In this method,
some clients have single-modal data, while some clients have two-
modal data. In the local training phase, two autoencoders need to be
trained for each client, and the local model without the corresponding
modal data is frozen. By aggregating the two autoencoders for each
client, the encoded representations of the different modal data are
learned. This approach provides an idea of how to handle multimodal
data in FL, but the drawback is that in each round of model aggregation,
the client needs to upload two models, which introduces additional
communication overhead.

Table 1 summarizes the contributions and limitations of the related
works. It is clear that there are still unresolved challenges and areas that
need to be explored in current research. Therefore, this paper proposes
a multimodal data fusion approach based on FL for fall detection
and activity recognition. The fusion of multimodal data can improve
the accuracy of classification models, while the FL-based framework
ensures the privacy of user data.

3. Proposed framework

This section presents the proposed framework, and Section 3.1 is
a general introduction of the framework. Section 3.2 describes the
proposed approach for data fusion, which illustrates how multimodal
data fusion is performed at the input level. Section 3.3 describes
the deployment of FL, which improves the security of the proposed
framework.

3.1. Overview

This paper proposes an FL framework for fall detection using multi-
modal data while preserving user privacy, as shown in Fig. 3. To make
the framework adaptable to the non-iid case, each user represents a
client in the FL system, making it resilient to the addition or removal
of clients. In this framework, each client first downloads the latest
global model from the server for initialization. The client has access
to multimodal data collected by IoMTs devices, including time-series
data and visual data. Additionally, each client has a data fusion module
for fusing multimodal data at the input level. After training on the
local data using the downloaded models, the clients upload the model
parameters to the server. Finally, the server aggregates the received
local models and updates the global model.

3.2. Multimodal data fusion

Data fusion at the input level aims at minimizing the loss of data
information. In this paper, we focus on one-dimensional time-series
data recorded by wearable sensors and two-dimensional visual data
recorded by cameras. Generally, it is difficult to directly fuse these
two kinds of data in terms of shape because of their heterogeneity.
Therefore, we use the Gramian Angular field (GAF) [37] method to
encode the 1D time series data into 2D images; then the encoded images
are stacked with the visual data on the channel to achieve fusion. The
detailed process steps are as follows:

A. Encoding of time series data

There are various methods to encode 1D time series data into 2D
images, such as Markov Transform Field (MTF) [38], Recurrence
Plot (RP) [39]. However, in the MTF method, hyperparameters
(fractional bins k) need to be set, and different values lead to
different imaging effects. Similarly, in the RF method, the imaging
effect has a strong empirical dependence on the selection of
the hyperparameter (critical distance ¢). In this paper, the GAF
method is chosen for encoding time series data as it avoids the
issue of selecting hyperparameters. In GAF, time series data is
represented in a polar coordinate system rather than a traditional
Cartesian coordinate system, preserving the absolute temporal re-
lationships between data points. For the GAF method, the detailed
procedure is as follows:
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Fig. 4. Signals from wearable sensors in UP Fall dataset, (a) Ankle accelerometer, (b) Ankle angular velocity, (c) Belt accelerometer, (d) Belt angular velocity.

Given a raw time series X; = {x|,X,,...,X,}, it first needs to be
normalized to the interval [-1, 1], and obtain:

(b)

X = (%, %s 05 %)

In the second step, the scaled time series X is mapped to polar
coordinates the value %; is encoded as angular cosine, and the
timestamp #; is encoded as radius.

{ ¢ =arccos (%), -1 <% < 1,5, €X

r=tﬁ’,ti€N

where N is a constant factor that regularizes the span of the polar (d)
coordinate system [40], here refers to the number of time points.
In the third step, the temporal correlation between different time
points is expressed as a GAF using trigonometric sum functions.

The GAF is defined as follows.

cos (¢ +¢y) - cos(p) +b,)
cos (¢ + ¢ ccos (g + ¢
oar_| (o) (#2144,
Ccos (¢n + ¢1) ©e COS (¢n + ¢n) Fig. 5. GAF images of different signals in UP Fall dataset, (a) Ankle accelerometer,

. . . . b) Ankl It locity, Belt 1 ter, (d) Belt It locity.
Here, the GAF is a matrix of size n X n. that is, the length of the (b) Ankle angular velocity, (c) Belt accelerometer, (d) Belt angular velocity

time series determines the size of the encoded image X;. Fig. 4
shows signals from wearable sensors in UP Fall dataset [9], and
Fig. 5 is the transformation into GAF images.
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B. Processing of visual data
For visual data from the camera, a fall activity is composed
of multiple frames of RGB When using visual data from the
camera, a fall activity typically consists of multiple frames of
RGB images. Using a single frame to represent a fall event can
lead to confusion in data labeling. For instance, when a person
is transitioning from standing to falling, they may be standing
in the first few frames and lying down in the last few frames.
Both standing and lying down positions in this activity represent
the same fall posture, which can cause subsequent DL models to
learn confusing information. To overcome this issue, we employ
a visual image stacking approach.
Specifically, given a segment of the raw video with multiple
frames X}, = ({xy,x,,...,x,}, take the neighboring frames x;
and x;,;, subtract between them to get Ax;, which represents
the change between adjacent frames. Then, all Ax; are summed
to concentrate the information change of one activity into one
image. Finally, take the gray image of the image, which is the
value of the first channel. In this way, the information about a
falling activity is concentrated in a single gray image X;.

C. Input-level data fusion
Input-level data fusion means that the data is fused before it is
entered into the DL model. It can avoid the loss of information
and also take advantage of the complementarity of multimodal
data. The GAF image X; can be obtained based on the time series
data encoding method described above; and the visual data are
processed to obtain the gray image X ;. Based on this, the fusion
of input levels can be performed.
Specifically, for the wearable sensors, we take the acceleration
signal and angular velocity signal to get the acceleration GAF
image X¢ and the angular velocity GAF image X', respec-
tively. For the visual sensors, we take one of the cameras. On the
channels, the three X, X", and X; are stacked to get the 3-
channel fusion data X . Fig. 6 shows the flowchart of input-level
fusion.

Xp=[XE, X% X1

3.3. Federated learning deployment

In this paper, in order to protect the data privacy of the participating
users in the fall detection system, we adopt the paradigm of FL. The
specific learning algorithm is FedAvg proposed by McMahan et al. [18].
It is worth stating that the proposed framework is also applicable to
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other FL algorithms, and we choose the most classical FedAvg for
simplicity.

Algorithm 1 shows the flow of FedAvg. The clients are required to
contain their locally fused data X and their corresponding labels Y.
The hyperparameters to be defined are, the number of communicating
clients K, the local batch size B, the number of epochs E for the
local, and the learning rate 5. Specifically, the clients are initialized
by a model w, at first. In each communication round ¢, the server
randomly selects K clients to be communicated to. This is because it is
important to consider that it is not possible for all clients to participate
in each round, and some clients will lose their connection due to poor
communication. The selected clients perform local training and update
the model w;,. Specifically during local training, the local data D is split
into batches of size B. The local model performs gradient descent for
each batch to perform the update. The updated model is returned by
the client to the server. Then, the server averages the received models
to update the global model w,, ;.

Algorithm 1: FedAvg algorithm.

Require: D = (X,Y): labeled local dataset; K: number of choosed
clients; B: local batch size; 5: learning rate.

: initialize w, at 1 =0

: for each round 7 do

: S, < randomly selected K clients

for all client k € S, do
split D into batches of size B
for each batch b € B do

wﬁ‘+| — w, —nVe&(w,;b)

end for

upload w}, | to server

10: end for

11: Server executes: w,,; < Zle

12: end for

©® NI AW

1k
5 Wit

4. Evaluation experiment

In this section, we show the details of the evaluation experiments.
Section 4.1 describes the UP Fall dataset used for the experiments.
In Section 4.2, we illustrate the setup of this experiment. Section 4.3
contains details about the FL algorithm and local training model.
Sections 4.4 and 4.5 present the results of fall detection and fall activity
recognition, with detailed discussions.

4.1. Dataset

In this paper, the UP Fall dataset [9] is used for experimental
evaluation. The public dataset contains sensor data from different
modalities of the same activity, from wearable sensors, infrared sensors,
and cameras, respectively. There are 6 wearable sensors placed on
different parts of the body, including the head, ankle, right pocket,
belt, neck, and wrist. Sensors located in the head record brain EEG
signals, while sensors in other locations record acceleration, angular
velocity, and luminosity. 6 pairs of infrared sensors were placed around
the experimental site, to record the connection and interruption of the
signal generated during the activities. As well, 2 cameras were arranged
in front and side of the experimental field to record visual data of the
activities. Fig. 7 shows the distribution of sensors. The dataset provider
indicated that all signals were aligned on the timestamp at the camera
sampling rate, which was 18 Hz.

In the fall experiment, 17 healthy males and females performed 11
different activities, each repeated 3 times (trials). In those activities,
Five different postural falls included: (1) falling forward using hands,
(2) falling forward using knees, (3) falling backward, (4) falling side-
ways, and (5) falling sitting in an empty chair. Six non-falling activities
included: (6) walking, (7) standing, (8) sitting, (9) picking up an object,
(10) jumping, and (11) laying. Fig. 8 shows examples of each activity,
and Table 2 lists the duration of each activity in the UP Fall dataset.
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Fig. 8. Examples of each activity in UP Fall dataset [9].

10) Jumping
object

Table 2

Each activity and its description in the UP Fall dataset.
Activity ID Description Duration (s)
1 Falling forward using hands 10
2 Falling forward using knees 10
3 Falling backward 10
4 Falling sideways 10
5 Falling sitting in empty chair 10
6 Walking 60
7 Standing 60
8 Sitting 60
9 Picking up an object 10
10 Jumping 30
11 Laying 60

4.2. Experimental setup

Although this dataset contains data from multiple modalities, it is
not always realistic to use too many devices just to detect falls. In
real life, people tend to carry wearable devices such as smartphones

or smartwatches. More commonly, surveillance cameras are installed
indoors rather than deploying a large number of infrared sensors.
Therefore, our experiments exclude infrared sensor signals and use
data from wearable sensors (without head sensors) and cameras. All
activities are intercepted to the same according to the shortest activity
time. In addition, excluding subjects No. 5 and No. 9, who were missing
experimental data, the data of the remaining 15 subjects were excluded.
Correspondingly, there are 15 clients in the FL system, and one user
represents one client. In each round of model aggregation, 12 clients
are randomly selected.

As in the experimental setup of articles [14,41], the data from trials
1 and 2 of each subject were used as the training set and the data
from trial 3 were used as the test set. Each sample used for training is
a 3-channel image data that is fused into two modalities: time series
and visual. The first and second channels are the acceleration and
angular velocity recorded by the same sensor, respectively, and the
third channel is the visual data from the camera. The specific fusion
method is described in Section 3.2.

Two different experimental scenarios are set up in this paper:
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(1) Fall detection
Five different postures of falls are classified as falls and six daily
activities are classified as non-falls. These two classes are marked
as 0 and 1, respectively.

(2) Fall activity recognition
For 11 different activities, each one is classified as a separate
class, labeled from 0 to 10.

To investigate the impact of multimodal data fusion on improving
fall detection performance, single-modal data is also provided as input
for comparative experiments. Specifically,

(a) TS + C1: Fusion data of time series and Camera 1;
(b) TS + C1: Fusion data of time series and Camera 2;
(c) TS: Time series only;

(d) C1: Camera 1 only;

(e) C2: Camera 2 only;

Where, in (a) and (b), the time series data are fused with Camera
1 and Camera 2, respectively, according to the method proposed in
this paper. In (c), the acceleration and angular velocity of the sensor
are converted to 2-channel GAF images, and then as input of the local
model. For (d) and (e) single frames of RGB from Camera 1 and Camera
2 are taken as inputs, respectively.

4.3. Experimental models

In this section, we describe the specific federal learning algorithms
used in the experiments, as well as the training models used for fall
detection and fall activity recognition, respectively.

4.3.1. FL algorithm

The Federated learning algorithm used in this paper is FedAvg [18],
which is the most basic and practical FL method. The key setup of this
FL experiment, each user represents a client who manages its own data
independently and does not share it with each other. Each client only
performs model transfer with the server. After the clients perform data
fusion locally, they train the local model with the fused data. In each
round of communication, the server randomly selects 12 clients out of
15 clients for the current round of training. Each of the selected clients
downloads the latest current model of the server for initialization and
performs gradient updates based on the locally fused data. At the end
of the local training round, the clients upload the locally updated
gradients to the server separately, and the server averages them. The
averaged gradients will be used as the gradients of the global model.
After a certain number of communication rounds, the final global model
is determined. In the experiment, the number of communication rounds
is set based on the difficulty of the classification task, where the number
of communication rounds is 100 for fall detection and 200 for fall
activity recognition.

4.3.2. Model for local training

One of the important components of federated learning is the local
model used for local training. After fusing the multimodal data at the
input level according to Section 3.2, a 3-channel image data X €
REXHXW will be generated. The fused data are fed into a CNN-based
deep learning model, and after feature extraction, they are fed into the
classification for fall prediction.

The experiment in this paper is based on Pytorch. After the data
fusion module, the input data is resized to 3 x 70 x 70. The locally
trained model for fall detection is shown in Fig. 9. Specifically, a 3-
layer CNN module is used for feature extraction. Each convolutional
layer has a kernel size of 3 x 3 and a stride of 1. As the convolu-
tion depth increases, the number of kernels is 3, 6, and 12, and the
activation functions are Softsign. After each convolution operation, the
maximum pooling operation is performed, and the kernel size of all
three pooling layers is 2 x 2 with a stride of 2. To prevent overfitting
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Fig. 9. The model for local training.

Table 3
Accuracy, Precision, Recall, and F1-score for fall detection.
Accuracy Precision Recall F1

TS + C1  99.867 + 0.049 99.840 + 0.070 99.867 + 0.071 99.854 + 0.054
TS + C2  99.927 + 0.041 99.841 + 0.089 100.00 + 0.000 99.920 + 0.045
TS 95.880 + 0.138 93.938 + 0.313 97.279 + 0.293  95.573 + 0.147
C1 96.147 + 0.225 94.496 + 0.369 97.251 + 0.297 95.847 + 0.242
Cc2 97.561 + 0.197 96.999 + 0.385 97.706 + 0.281 97.346 + 0.210

of the model, Droupout and Batchnormalize operations are performed
after each pooling operation. Finally, the extracted features are fed
into the classification layer after flatten, and the cross-entropy loss
function is used to calculate the loss of the local model. In addition,
the optimization function is stochastic gradient descent (SGD) with a
learning rate of /r is 0.001. In each round, each local model is trained
with an epoch of 3 and batch size of 32.

4.4. Experimental results

This section shows the results of the two experimental scenarios
under FL settings in detail, along with a detailed discussion of the
results. The classification experiments’ metrics are Accuracy, Precision,
Recall, and F1 score. Each experiment was performed 10 times and the
average was taken as the final result.

4.4.1. Fall detection

For the experimental scenario of fall detection, federated learning
aims to jointly train a binary classification model to identify falls
and non-falls. The final global model is obtained after 100 rounds of
communication between the clients and the server. The test set is used
to evaluate the performance of the global model, and Fig. 10 shows the
accuracy curves of the global model under 5 different input modes. It
can be seen that for the fused data TS + C2, the global model achieves
the best accuracy after around 10 communication rounds. When the
fused data TS + C1 is input, the best accuracy occurs after about 40
communication rounds. When a single-modal (TS, C1, and C2) is used
as input, the best accuracy is lower than the first two. That is, Fewer
communication rounds are required to achieve the best accuracy when
fused data is used as input. More, by observing the accuracy curve,
the curve of fused data (orange and blue line) behaves more flatly and
converges faster as the number of communication rounds increases.

The classification results for fall detection are shown in Table 3, in
which each value consists of the mean + standard error. It is obvious
that when fused data is used as input, the test accuracy is much
higher than that of a single modality. This is consistent with what the
accuracy curve presents. The second term is precision, which indicates
the correct rate in the samples predicted as falls. the precision of both
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TS + C1 and TS + C2 reach 99.84%. And the precision of TS, C1, and
C2 are 93.938%, 94.496%, and 96.999%, respectively. Recall refers to
the proportion of samples that are correctly predicted as falls among
all the fall samples. Recall plays a very important role as a metric in
fall detection. The correct prediction of falls and timely warning can
minimize potential life-threatening events. By the table, the recall of
TS + C1 is 99.867%, and TS + C2 reaches 100%, and the recall of
the remaining three single modalities is all around 97%. Obviously, the
former two (TS + C1 and TS + C2) have better performance than the
latter three (TS, C1, and C2). Finally, F1 is a combination of accuracy
and recall, which indicates the robustness of the model. The F1 of
TS + C1 is 99.854% and TS + C2 is 99.920%, while the F1 of TS,
Cl1, and C2 is 95.573%, 95.847%, and 97.346%, respectively. In the
four scores, the fusion data has higher expressiveness than the single
modality data. This shows that the amount of information carried by
the fused data is higher than that of the single modality data. In the
training of the local model, taking fusion data as input can enhance
the fall detection ability. Additionally, comparisons and analyzes are
performed for each mode. The Accuracy, Precision, Recall and F1 of TS
+ C2 are all slightly higher than TS + C1, which shows that when the
wearable sensor data is combined with camera 2 (front view), it brings
the best classification results. Similarly, when the data from camera 2
is used as input, its classification results are higher than those of the
other two single modalities. This leads to the conclusion that the data
from camera 2 plays a more significant role in the experiment.

Correspondingly, Fig. 11 shows the confusion matrix for the best
results in fall detection. It can be seen when using fused data for
fall detection, almost no classification errors occur in Fig. 11(a) TS
+ C1 and Fig. 11(b) TS + C2. For single-modal data, the number
of misclassifications in Fig. 11(e), (d), and (c) increases sequentially.
For TS, C1, and C2, the number of fall samples predicted as non-falls
was 10, 7, and 3, respectively. Although classification errors seem to
account for a low proportion of the total samples, for real-life fall
detection, even an occasional prediction error may have unimaginable
consequences. This again shows the importance of fused data for fall
detection.

As a conclusion, the experimental results show that the fused data
outperformed the single-modal in the binary classification task of fall
detection. Specifically, TS has lower accuracy than C1 and C2 when fall
detection is performed with a single-modal. This is because the time
series data is transformed into image data and then fed into a CNN-
based classification model. It is reasonable that the result performance
is poorer than the original RGB images. However, when the time series
data were fused with Camera 1 or Camera 2 at the input level, the
obtained classification accuracy was improved. This also verifies that
the data from different modalities have complementary information.
When data fusion is performed at the input level, it can help to improve
the performance of the classification model.
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Table 4
Accuracy, Precision, Recall, and Fl-score for fall activity recognition.
Accuracy Precision Recall F1

TS + C1  89.769 + 0.162 90.094 + 0.155 89.769 + 0.162 89.748 + 0.162
TS + C2 84.097 + 0.234 84.546 + 0.253 84.097 + 0.234 83.999 + 0.249
TS 53.085 + 0.255 52.938 + 0.450 53.085 + 0.255 52.286 + 0.360
Cl 70.439 + 0.325 70.607 + 0.318 70.439 + 0.325 70.175 + 0.329
C2 77.732 £ 0.415  77.777 + 0.410 77.732 + 0.415 77.416 + 0.428

4.4.2. Fall activity recognition

To further evaluate the performance of the proposed FL framework,
the experiment was extended to a multi-classification task. In this
experiment, each activity of the UP Fall dataset as a class, including the
fall activities with different postures and daily activities. Labels A1-A11
are refer to these activities, where, Al: falling forward using hands, A2:
falling forward using knees, A3: falling backward, A4: falling sideways,
AS5: falling sitting in an empty chair, A6: walking, A7: standing, A8:
sitting, A9: picking up an object, A10: jumping, A11: laying.

Fig. 12 depicts the accuracy curves of the FL global model as the
number of communication rounds increases. Similar to the trend ob-
served in binary classification, the accuracy achieved by fusing data as
input is superior to that of using a single-modal as input. Furthermore,
the accuracy of TS + C2 is marginally better than that of TS + C1
in the early stages of the model’s run. However, after approximately
35 communication rounds, the latter outperforms the former. After
about 75 communication rounds, both TS + C1 and TS + C2 (blue and
orange lines) reach a steady state, while the steady state of TS, C1,
and C2 occurs after about 130 communication rounds. In the multi-
classification task, the accuracy difference is more obvious, from high
to low are TS + C1, TS + C2, C2, C1, and TS.

Table 4 presents the results for the multi-classification task, each
value is the mean + standard error of 10-time experiments. For accu-
racy, TS + C1 and TS + C2 are 89.769% and 84.097%, respectively,
while TS, C1 and C2 are 53.085%, 70.439% and 77.732%, respectively.
It is consistent with the performance of the accuracy curves. Precision
plays a more important role in fall activity recognition, which indicates
the ability of the model to accurately identify each type of activity. It
can be seen from the table that the precision of TS + C1 and TS + C2 are
90.094% and 84.546%, respectively, while the precision of C1, C2, and
TS did not exceed 80%. The five input modes have similar performances
to precision on Recall and Fl-score. The specific values are shown in
the Table 4 and will not be repeated here.

In addition, comparing the 4 evaluation metrics in the Figs. 10 and
12, the overall results for multi-class classification are lower than those
for binary classification. This is because when the number of training
samples and the model structure are consistent, the multi-classification
task is obviously more difficult than the binary classification task. The
experiment in this section aims to classify each of the 11 activities.
Therefore, it is reasonable that the accuracy of the classification results
has decreased.

Fig. 13 shows the confusion matrix for fall activity recognition.
Fig. 13(a) represents TS + C1, where the recognition error rate for
the first 5 fall activities was higher than that for the last 6 daily
activities. For example, about 19 samples of Al are misclassified as
A3, 10 samples of A2 are misclassified as Al, and 8 samples of A4
are misclassified as A2. This is due to the similarity of these fall
poses, Al and A2 are respectively falling forward using hands and
falling forward using knees, A3 and A4 are falling backward and falling
sideways respectively. For activities A6 and Al0, no prediction errors
occurred in the experiments. In Fig. 13(b), the results for TS + C2 were
slightly worse than for TS + C1. Specifically, 20 samples of Al were
misclassified as A2, 13 samples of A2 were misclassified as Al, and 14
samples of A4 were misclassified as A5. Similar to the performance of
TS + C1, the model performed well in daily activities (A6-A11) and
made fewer mistakes in the distinction. Furthermore, Figs. 13 (c), (d),
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Fig. 12. The accuracy curves of global model for fall activity recognition.

and (e) show the confusion matrices of TS, C1, and C2. Intuitively, these
three performed worse in the recognition of different fall activities
compared to the fused data TS + C1 and TS + C2. In particular, for
time series data TS, more recognition errors were observed even for
daily activity recognition (A6-A11). The results of the confusion matrix
further demonstrate that when fused data are used as input to the local
model, the results outperform those of the single modality.

To summarize, compared to fall detection, the proposed model
demonstrates a decrease in performance when recognizing each dif-
ferent fall posture and daily activity. Since when the local model is
a simple 3-layer CNN network, the difficulty of multi-classification
tasks is higher than that of binary classification tasks. However, it still
outperforms single-modal data when using multimodal fusion data.

4.5. Discussion

With the two experiments in Section 4.4, it has been demonstrated
that fusion of multimodal data is necessary in IoMT. For fall detection
and fall activity recognition, data fusion at the input level leads to
better classification results. Data fusion at the input level achieves
complementary information, and the fused data contains not only
visual information but also temporal information. While single-modal
data, naturally carry less information than fused data. Moreover, it is
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inappropriate to use only time series data converted to images for fall
detection and fall activity recognition, as it always leads to the lowest
classification accuracy. It is worth emphasizing that in the experimental
setup of this paper, the local model is based on a convolutional neural
network, which is more suitable for image processing tasks rather
than time series data. This is evidenced by the higher classification
accuracies of C1 and C2 than TS.

In fall detection and fall activity recognition, FL has better privacy
protection than data-centralized ML, thanks to its distributed training
approach. During FL training, users only need to exchange models
instead of uploading their own data to the cloud, which avoids privacy
leakage issues. More, FL helps to solve the problem of data silos, which
greatly increases the participation of edge users. However, it also poses
some challenges when utilizing FL for fall detection. On one hand,
frequent communication between the client and the server is required,
which will lead to a communication burden once the model is too large,
so FL tends to be suitable for less complex models. In this paper, the
local training model used is a simple 3-layer CNN, which does not cause
communication dilemma. On the other hand, the distribution of data
among different clients introduces statistical heterogeneity, which may
lead to a model with less accuracy than that of traditional DL models.
The above are not only the challenges faced by FL in fall detection, but
also the challenges faced by the FL method itself.

5. Conclusion

This paper proposes a FL based multimodal data fusion method for
fall detection where users act as independent clients and do not share
local data settings with the server or other clients, thus protecting the
security of user information. Each client has a data fusion module that
takes advantage of the complementary information from heterogeneous
sensors, where time series data from wearable sensors are converted
into images and then fused with visual data from cameras. A local
fall detection model is trained based on the locally fused data, and
multiple clients jointly train a global model through FL. The pro-
posed approach improves the recognition accuracy of fall detection
through input-level data fusion without exposing user data. The results
of two fall-related classification tasks show that the proposed data
fusion approach achieves a higher accuracy than that of single-modal
data, demonstrating the effectiveness of data fusion for fall detection.
Future work will explore the fusion of data from more modalities,
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Fig. 13. Confusion matrices for fall activity recognition. (a) TS + C1: Fusion data of time series

Time series only; (d) C1: Camera 1 only; (e) C2: Camera 2 only.

such as environmental sensors, and investigate human activity recog-
nition based on federated multi-task learning where multiple learning
tasks are performed simultaneously for different purposes within a
privacy-preserving framework. Other possible avenues of research in-
clude exploring the use of more advanced machine learning models for
fall detection and data fusion or to investigate the transferability of
the proposed FL-based multimodal fusion method to other healthcare
applications, such as monitoring of chronic diseases or elderly care. Fur-
thermore, the development of more sophisticated privacy-preserving
techniques, such as secure multi-party computation and homomorphic
encryption, can also be explored to further enhance the security and
privacy of user data in FL-based healthcare applications. Finally, the
deployment and evaluation of the proposed fall detection system in
real-world scenarios can provide valuable insights into its effectiveness
and practicality.
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