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A B S T R A C T   

E-commerce and logistics companies are facing important challenges to satisfy the rapid growth of customer 
demands. Unmanned aerial vehicles such as drones are an emerging technology that are very useful to cope with 
rising customer expectations of fast, flexible, and reliable delivery services. Drones work in tandem with trucks to 
perform parcel delivery, which have proven to reduce costs, CO2 emissions, and delivery times. This research 
proposes a mixed integer programming formulation to address the Vehicle Routing Problem with Drone (VRPD) 
by assigning customers to drone-truck pairs, determining the number of dispatching drone-truck units, and 
obtaining optimal service routes while the fixed and travel costs of both vehicles are minimized. Given the NP- 
hard nature of the VRPD, an ant colony optimization (ACO) algorithm is elaborated to solve this problem. Two 
novel methods are proposed to investigate the efficiency of the drone-truck combination by allowing the drones 
to perform additional delivery services to only one feasible customer and also multiple feasible customers while 
the truck waits at a customer location. Experimental results show that the proposed ACO algorithm can effec-
tively solve the VRDP for different size instances and different customer location distributions, and is successful 
in providing timely solutions for small test instances within 1% of the optimal solutions. Finally, experimentation 
also reveals that the ACO algorithm outperforms the classical VRP by obtaining cost-savings of over 30% for large 
instances.   

1. Introduction 

In the last few decades, the logistics industry has undergone a sig-
nificant and rapid growth worldwide, generating many jobs and 
considerable annual revenues [1]. Amid this growth, logistics com-
panies are facing important challenges to satisfy increasing customer 
demands in an efficient and effective manner. New technologies have 
been deployed in logistics strategies to provide intelligent solutions to 
cope with the rising customer expectations of delivering fast, flexible, 
and reliable services. These technologies have shown to lower costs and 
reduce delivery times while improving customer satisfaction [2,3]. 

Unmanned aerial vehicles such as drones are an emerging technol-
ogy that are very useful in overcoming delivery problems in disaster 
relief operations [4], healthcare [5], and logistics and retail industries 
[6]. Drones conform a novel dispatching method that provides a fast and 
easy delivery service [7]. As opposed to the delivery trucks, drones have 

the advantage of not being restricted to the road network or confront 
traffic congestion that may result in dispatching delays. However, 
drones have a limited capacity of one or few packages and a limited 
flight range requiring frequent recharging or replacement of batteries 
for continuing their flight operations [8]. Therefore, an adequate syn-
chronization between of trucks and drones in the delivery process is 
required while yielding low costs and high efficiency. 

The Vehicle Routing Problem (VRP) is one of the essential issues in 
logistics management. Conventionally, the VRP obtains the dispatching 
plan for trucks located at the depot to serve customers. Different VRP 
variants exist in the literature to accommodate different conditions and 
requirements such as the pickup and delivery VRP [9], heterogeneous 
fleet VRP [10], multi-depot VRP [11,12], among others. In recent years, 
auxiliary vehicles (e.g., motorcycle, trailer, small van, or drone) have 
been employed to assist primary vehicles (e.g., large trucks) in servicing 
customers, particularly when encountering poor parking conditions or 
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scarce vehicle accessibility. This type of vehicle dispatching problem, 
namely Feeder VRP (FVRP), is more complex than conventional VRP 
because schedules and routes of at least two vehicles need to be planned 
simultaneously. Some studies on FVRP are found in the literature 
[13,14,2]. 

The VRP with drone (VRPD) is an emerging topic for delivering small 
packages due to cost-savings, reduced CO2 emissions, and lower de-
livery times [15]. VRPD is a specific type of FVRP since drones are 
employed as auxiliary vehicles that concurrently serve customers with 
trucks. Drones meet with trucks at customer locations (i.e., joints) for 
reloading and battery recharging or replacement. Subsequently, the 
drones meet with trucks at other joints until the delivery service is 
completed. The use of drones as auxiliary vehicles is probably the most 
cost-effective when assisting conveyance since they are faster and more 
economical than the trucks [16,17], and thus, drones form an emerging 
and promising technology to be deployed in the near future. 

This study introduces a MIP formulation of the VRPD and solves this 
problem using a proposed ACO algorithm for different benchmark sce-
narios. Small instances are solved to optimality and then compared with 
the ACO algorithm results. Additionally, ACO is used to solve the VRPD 
for instances up to 200 customers that are clustered (C), random (R), and 

random-clustered (RC). We present and implement two novel drone 
service modes, in which, in addition to synchronizing trucks and drones 
to perform a collaborative delivery process in the VRPD, the drones also 
may serve customers while the trucks halt at customer locations. 

The remainder of this study is structured as follows: Section 2 pre-
sents a literature review. Section 3 describes the problem, illustrates the 
typical drone distribution mode, formulates the mathematical model for 
the VRPD, and presents the two novel drone service modes. Section 4 
describes the benchmark and the proposed solution approach. Section 5 
presents the computational results and a comparison with the traditional 
VRP. Finally, Section 6 presents the conclusions and future research. 
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Fig. 1. Example of drone actions.  

Fig. 2. Dronés arrival times.  
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Fig. 3. Additional flying action of the drone (FS+ mode).  
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Fig. 4. Example of FS+1 method.  
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2. Literature review 

VRPD and its variants have been widely investigated in recent years 
and are currently an ongoing research topic [18–22,15,23,24]. For 
example, Poikonen et al. [19] solved the VRPD by minimizing the total 
time for delivering all customer packages using a fleet of trucks with 
their respective number of drones. Kitjacharoenchai and Lee [20] pro-
posed a model that synchronizes the trucks and multiple drones for 
parcel delivery while considering truck and drone capacities and mini-
mizing arrival time of both vehicles at the depot. As opposed to the 
aforementioned studies, our study consists of drone-truck pairs that 
perform collaborative work by following optimal delivery routes while 

minimizing fixed and travel costs of the vehicles. Euchi and Sadok [23] 
formulated a MILP model that takes into account dependent and inde-
pendent parcel deliveries, in which a truck-drone pair work in tandem 
and also work separately from each other to service customers. Similarly 
to these authors‘ work, we propose two novel service modes to allow 
drones to serve customers as a truck is in motion or idling at customer 
locations. 

In other studies, MIP models are formulated so that drones may take 
off from a truck and subsequently land on a different truck after serving 
their assigned customers [21,15]. Guerriero et al. [18] presented a 
multi-objective formulation for the VRPD with soft time windows, while 
considering simultaneously the traveled distances, customer 

Fig. 5. Flowchart of the ACO solving process.  
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satisfaction, and number of drones. Chung et al. [22] and Viloria et al. 
[24] provide for more details on the modeling of the VRPD. 

Due to the NP-hard nature of VRP and its variants (e.g., VRPD), 
various heuristic and metaheuristics approaches have been developed to 
solve this problem [25–33,15,34,35,23]. Studies have employed heu-
ristic approaches such as hybrid Clarke and Wright heuristic algorithm 
[27], optimization-driven progressive algorithm [28], and heuristic 
two-phase strategy embedded in a multi-start framework to solve 
different variants of the VRPD [34]. Other studies solved this problem 
for different benchmark instances using metaheuristics such as adaptive 
large neighborhood search metaheuristic [29], and hybrid genetic al-
gorithm [23]. Combinations of metaheuristics have also been developed 
for solving the problem such as the route construction and large 
neighborhood search [33], Tabu Search algorithm and Analytical Hi-
erarchy Process [36], and variable neighborhood search and Tabu 
search [35]. In addition, Schermer et al. [30] proposed a matheuristic 
approach that uses a heuristic framework with an embedded mathe-
matical programming to solve the problem with large instances. Finally, 
studies have proposed nature-inspired metaheuristics such as simulated 
annealing heuristics [25], improved artificial bee colony algorithm 
[31,32], and Swarm intelligence metaheuristics [26]. 

Ant Colony Optimization (ACO) is a heuristic algorithm that has 

been widely used to provide good solutions to the VRP and its variants 
within a reasonable period of time. Experimental results suggest that the 
ACO performance is competitive with other techniques used to generate 
solutions to the VRP. Unlike some algorithms that need to tackle 
infeasible solutions frequently, ACO can ensure the feasibility of the 
generated solutions in an efficient and rapid manner, meaning that ACO 
may ensure the search within the solution domain [37–39,2,40]. Studies 
have used variants of ACO metaheuristic approaches to address the VRP 
with fleets that comprise solely drones [41–45]. In recent years, studies 
have utilized ACO to solve the traveling salesman problem with drone, 
TSPD [46–49], but few studies are found in the literature that have 
addressed VRPD using ACO [50,51], as in this research. For example, 
Das et al. [50] formulated a bi-objective MIP model of the VRPD that 
minimized travel costs and maximizes customer service and solved the 
problem using a collaborative pareto ACO algorithm. In another study, 
Gu et al. [51] presented two advanced ACO with variable visibility and 
multilevel feedback pheromones to solve the VRPD considering instant 
delivery operations. 

3. Problem description 

In this study, the VRPD is a vehicle routing problem, where a drone is 
utilized as an auxiliary vehicle to a truck to help expedite the delivery 
process of small packages. The truck and drone depart from the depot, 
serve customers, and subsequently return to the depot. Both vehicles 
may depart or return to the depot in tandem or separately. The drone has 
two actions during the delivery process: i) Stationary: a drone travels on 
a truck from node A to node B (saving battery power) and has no mission 
assigned to serve any customers during this action, as shown in Fig. 1a); 
ii) In-flight: a drone has a mission to serve a single customer ×while a 
truck travels from node A to node B, as depicted in Fig. 1b). These types 
of drone movements are known as the Flying Sidekick (FS) mode. 

The assumptions are the following.  

1. All vehicles depart their routes at the depot and end their routes 
at the depot before the work shift terminates.  

2. All customer demands consist of the same type of cargo and must 
be served during working hours within one day.  

3. A drone tour is only allowed to start and end at customer nodes.  
4. Every customer (node) may be served once by either a truck or a 

drone and every node is a possible joint.  
5. Only the truck has a capacity constraint and each drone can only 

deliver one package at a time. 

a) Visit sequence before applying 2-opt method 

b) Visit sequence after applying 2-opt method 

d a b c 

z y x 

a d c b 

x y z 

Fig. 6. Illustration of 2-opt on a truck-drone route.  

Table 1 
Comparison results between ACO and optimization model for the VRPD (FS mode).  

Instances NC Model Results ACO Results △%Total Cost 

CPU (s) SF Total Cost GAP Model CPU (s) SF Total Cost 

C01 5 0.33 1  4873.17  0.02%  0.19 1  4873.18  0.00% 
10 140.59 1  4938.54  0.02%  0.48 1  4938.84  0.01% 
15 7200 1  4962.89  1.12%  0.87 1  4963.87  0.02% 
20 7200 1  4978.56  1.61%  1.49 1  4980.38  0.04% 
25 7200 1  4996.33  1.97%  2.2 1  4998.24  0.04% 
30 7200 1  5116.10  3.59%  4.08 1  5135.20  0.37% 

R01 5 0.45 1  5030.66  0.10%  0.18 1  5030.66  0.00% 
10 303.05 1  5192.96  0.01%  0.54 1  5192.96  0.00% 
15 7200 1  5261.23  3.56%  0.75 1  5265.69  0.08% 
20 7200 1  5311.98  3.84%  1.44 1  5317.82  0.11% 
25 7200 1  5394.35  5.55%  1.81 1  5419.35  0.46% 
30 7200 1  5440.49  7.45%  3.69 1  5473.95  0.61% 

RC01 5 1.03 1  5249.82  0.03%  0.2 1  5249.82  0.00% 
10 126.86 1  5145.35  0.04%  0.48 1  5145.35  0.00% 
15 7200 1  5226.11  2.56%  0.88 1  5226.11  0.00% 
20 7200 1  5189.7  2.63%  1.57 1  5203.46  0.27% 
25 7200 1  5228.99  3.53%  2.04 1  5281.89  1.01% 
30 7200 1  5270.3  5.10%  3.91 1  5325.76  1.05% 

Note: NC: number of customers; CPU: CPU time (s); SF: number of sub-fleets; Total: total cost; GAP Model: Integrality GAP; Δ% Total Cost: ratio between the ACO and 
model cost difference and the model cost. 

S.-H. Huang et al.                                                                                                                                                                                                                              



Advanced Engineering Informatics 51 (2022) 101536

5

6. A single drone is accompanied by a specific truck, and one truck 
can only reload its assigned drone.  

7. There is no travel cost for the drone while it travels on the truck.  
8. The drone must travel to the truck’s next node as soon as it 

completes a mission. The truck must be located at the next node 
before the drone’s arrival.  

9. A recovery time is required for the drone after meeting with the 
truck to get ready for the next mission.  

10. The reloading time of the drone is negligible since only one 
package is loaded.  

11. The total costs consist of fixed route and travel costs. 

According to assumption 8, the drone must meet with the truck at a 
customer location within a specific period. Fig. 2a) illustrates that the 
drone must arrive at the joint (i.e., customer j) either during the truck 
working time or the waiting endurance. If the drone arrives at the joint 
during the truck working time, then the drone must wait until the truck 
completes its service. Thus, the truck and drone’s departure time for the 
next node will correspond to the truck’s service time plus the drone’s 
recovery time. If the drone arrives at the joint during the truck’s waiting 
endurance, then the drone may be dispatched immediately after the 
dronés recovery time. Thus, the departure time of the truck and drone 
for the next node will be the drone’s arrival time plus the dronés re-
covery time. Fig. 2b) shows when the truck returns to the depot. 

The model is formulated with the following sets, parameters, and 

decision variables to solve the VRPD.  
Model parameters: 

O  depot 
cT

ij  travel cost of truck T between node i and node j 

cD
ij  travel cost of drone D between node i and node j 

fT  fixed cost for truck T 
fD  fixed cost for drone D 
qi  customer demand of node i 
Q truck capacity 
tTij  travel time of truck T between node i and node j 

tDij  travel time of drone D between node i and node j 

sT
i  customer service time of truck T at node i 

sD
i  customer service time of drone D at node i 

r recovery time of a drone 
F maximum flying time of a drone 
W maximum waiting time of truck at a joint 
T maximum shift time  

Indices: 
i, j, l indexes for nodes 
k index for vehicle (truck or drone)  

Sets: 
N set of nodes (includes the depot) 
I set of customers 
K set of vehicles belonging to a sub-fleet (i.e., truck-drone pair) 
S subset of I  

Decision variables: 
xT

ijk  binary variable, = 1 if truck k travels from node i to node j, 0 otherwise 

(continued on next page) 

Table 2 
Best output results for the benchmark using the ACO (FS mode).  

Instances Parameters SF CPU (s) Distances Costs  

NC α β z TTD DTD TFC TTC DTC Total Cost 

C01 50 2 8 0 1  11.09  121.91  221.29 4796  402.30  73.03  5271.32 
C02 50 4 9 0.05 2*  8.51  156.64  353.66 5232  516.91  116.71  5865.63 
C03 50 9 6 0.2 2  7.62  180.64  251.80 9592  596.11  83.09  10271.19 
C04 50 9 6 0 2*  8.68  149.55  279.05 5232  493.52  92.09  5817.60 
C05 100 9 8 0 2  29.82  158.47  328.33 9592  522.95  108.35  10223.31 
C06 100 7 8 0 2  32.66  175.19  352.00 9592  578.13  116.16  10286.30 
C07 100 3 7 0.15 2  29.31  216.88  374.66 9592  715.70  123.64  10431.35 
C08 100 9 5 0 2  26.22  214.46  400.73 9592  707.72  132.24  10431.97 
C09 200 2 9 0.05 4  138.66  362.31  682.71 19,184  1195.62  225.29  20604.90 
C10 200 4 9 0 4  126.92  317.99  542.51 19,184  1049.37  179.03  20412.40 
C11 200 3 8 0.25 4  137.26  325.78  486.29 19,184  1075.07  160.48  20419.55 
C12 200 7 8 0.15 4  133.80  357.47  534.03 19,184  1179.65  176.23  20539.88 
R01 50 10 10 0.1 2  9.3  231.56  355.86 9592  764.15  117.43  10473.60 
R02 50 5 7 0.25 2  9.31  200.68  374.52 9592  662.24  123.59  10377.84 
R03 50 5 7 0.1 2  8.25  205.54  399.46 9592  678.28  131.82  10402.10 
R04 50 3 6 0.1 2  7.33  220.66  361.61 9592  728.18  119.33  10439.50 
R05 100 6 8 0.3 3  30.58  330.13  552.75 14,388  1089.43  182.41  15659.83 
R06 100 6 6 0.1 3  28.06  326.16  700.00 14,388  1076.33  231.00  15695.33 
R07 100 3 8 0 3  31.41  332.95  655.63 14,388  1098.74  216.36  15703.10 
R08 100 6 8 0.25 3  32.44  329.27  503.72 14,388  1086.59  166.23  15640.82 
R09 200 2 10 0 4  137.42  482.82  936.31 19,184  1593.31  308.98  21086.26 
R10 200 5 9 0 4  139.03  485.60  954.93 19,184  1602.48  315.13  21101.61 
R11 200 1 10 0 4  137.35  459.95  922.34 19,184  1517.84  304.37  21006.22 
R12 200 7 8 0 4  137.76  480.24  941.83 19,184  1584.79  310.80  21079.60 
RC01 50 2 6 0.05 2  7.89  181.76  360.71 9592  599.81  119.03  10310.85 
RC02 50 8 9 0.15 2  9.47  215.94  346.96 9592  712.60  114.50  10419.11 
RC03 50 10 8 0.3 2  8.79  179.97  338.89 9592  593.90  111.83  10297.75 
RC04 50 10 10 0 2*  8.94  153.39  297.89 5232  506.19  98.30  5836.50 
RC05 100 7 8 0 3  31.63  261.95  508.14 14,388  864.44  167.69  15420.14 
RC06 100 9 10 0.05 2  31.19  291.66  527.97 9592  962.48  174.23  10728.72 
RC07 100 9 9 0.05 2  29.93  262.90  588.30 9592  867.57  194.14  10653.71 
RC08 100 1 10 0.15 3  31.24  275.81  458.56 14,388  910.17  151.32  15449.51 
RC09 200 1 10 0 4  138.26  463.83  839.87 19,184  1530.64  277.16  20991.80 
RC10 200 5 10 0.1 4  141.89  445.06  720.07 19,184  1468.70  237.62  20890.32 
RC11 200 2 9 0 4  136.42  420.40  804.36 19,184  1387.32  265.44  20836.77 
RC12 200 8 10 0 4  138.95  423.00  790.61 19,184  1395.90  260.90  20840.82 

Note: *: one drone is dispatched as 2nd sub-fleet; NC: number of customers; SF: number of sub-fleets; CPU: CPU time (s);α: pheromone intensity weight in Eq. (34);β: 
pheromone visibility weight in Eq. (34); z: parameter for determining a drone’s action; TTD: truck travel distance; DTD: drone travel distance; TFC: total fixed costs; 
TTC: truck travel costs; DTC: drone travel costs. 
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(continued ) 

Model parameters: 

xD
ijk  binary variable, = 1 if drone k travels from node i to node j, 0 otherwise 

yjk  binary variable, = 1 if node j is a joint where drone k meets with the truck, 
0 otherwise 

zD
ik  binary variable, = 1 if customer i is served by drone k, 0 otherwise 

gT
k  freight transported on truck k 

gD
ik  freight transported on drone k before visiting node i 

gT
ik  freight transported on truck k before visiting node i 

aT
ik  accumulated working time for truck k when arriving node i 

aD
ik  accumulated working time for drone k when arriving node i 

wT
ik   waiting time for truck k at joint i  

The model formulation is the following. 

min
∑

i∈N

∑

j∈N:i∕=j

∑

k∈K

(
cT

ij x
T
ijk + cD

ij x
D
ijk − cD

ij x
T
ijkxD

ijk

)
+
(
f T + f D)

∑

j∈I

∑

k∈K
xT

Ojk (1)  

s.t. 
∑

j∈I:j∕=i

xT
ijk ≤ 1 ∀k ∈ K, i ∈ N (2)  

∑

i∈N:i∕=l

xT
ilk =

∑

j∈N:j∕=l

xT
ljk ∀k ∈ K, l ∈ N (3)  

∑

j∈I:i∕=j

xD
ijk ≤ 1 ∀k ∈ K, i ∈ N (4)  

∑

i∈N:i∕=l

xD
ilk =

∑

j∈N:l∕=j

xD
ljk ∀k ∈ K, l ∈ N (5)  

∑

j∈I
xT

Ojk =
∑

j∈I
xD

Ojk ∀k ∈ K (6)  

∑

i∈N:i∕=j

xT
ijk = yjk ∀k ∈ K, j ∈ I (7)  

∑

i∈N:i∕=j

xD
ijk ≥ yjk ∀k ∈ K, j ∈ I (8)  

∑

i∈N:i∕=j

(
xD

ijk − yjk

)
= zD

jk ∀k ∈ K, j ∈ I (9)  

∑

i∈N:i∕=j

xT
ijk = 1 − zD

jk ∀k ∈ K, j ∈ I (10)  

∑

i∈N:i∕=j

(
xT

ijk + xD
ijk

)
≤ 1+ yjk ∀k ∈ K, j ∈ I (11)  

∑

k∈K
yjk ≤ 1 ∀j ∈ I (12)  

gT
k ≤ Q ∀k ∈ K (13)  

gT
k ≥

∑

j∈I
gT

jk +
∑

j∈I
gD

jk ∀k ∈ K (14)  

gD
jk = qj

(
zD

jk

)
∀k ∈ K, j ∈ I (15)  

gT
jk = qj

(
1 − zD

jk

)
∀k ∈ K, j ∈ I (16)  

∑

k∈K

(
∑

j∈I
gT

jk +
∑

j∈I
gD

jk

)

=
∑

j∈I
qj (17)  

aT
ik ≤ T ∀k ∈ K, i ∈ N (18) 

a) Instance C02 

b) Instance C04 

c) Instance RC04 
Fig. 7. Solutions for instances with one sub-fleet and additional drone.  
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a) =1        b) =0.3 

Fig. 8. Solution of instance C01 with different values for parameter π using FS+ mode.  

Table 3 
Output results of VRPD for FS, FS+, and FS+1 methods.  

Instances FS FS+ FS+1 △%Total Cost 

SF Total Cost π SF Total Cost π SF Total Cost γ1 γ2 γ3 

C01 1  5271.32 0.3 1  5273.96 0.3 1  5263.29  0.05%  − 0.15%  − 0.20% 
C02 2*  5865.63 0.2 2*  5822.58 0.1 2*  5894.99  − 0.73%  0.50%  1.24% 
C03 2  10271.19 0.8 2  10171.39 1 2  10254.77  − 0.97%  − 0.16%  0.82% 
C04 2*  5817.6 1 2*  5824.24 0.7 2  10169.69  0.11%  74.81%  74.61% 
C05 2  10223.31 0.3 2  10190.97 0.5 2  10178.78  − 0.32%  − 0.44%  − 0.12% 
C06 2  10286.3 0.2 2  10296.50 0.4 2  10284.54  0.10%  − 0.02%  − 0.12% 
C07 2  10431.35 0.3 2  10409.12 0.3 2  10406.04  − 0.21%  − 0.24%  − 0.03% 
C08 2  10431.97 0.1 2  10433.25 0.1 2  10450.14  0.01%  0.17%  0.16% 
C09 4  20604.9 0.1 4  20648.85 0.3 4  20601.45  0.21%  − 0.02%  − 0.23% 
C10 4  20412.4 1 9**  18668.31 0.7 4  20364.22  − 8.54%  − 0.24%  9.08% 
C11 4  20419.55 0.2 4  20424.10 0.5 4  20340.55  0.02%  − 0.39%  − 0.41% 
C12 4  20539.88 0.1 4  20591.51 0.1 4  20524.22  0.25%  − 0.08%  − 0.33% 
R01 2  10473.6 0.7 2  10383.55 0.7 2  10427.67  − 0.86%  − 0.44%  0.42% 
R02 2  10377.84 0.8 2  10351.50 1 2  10372.25  − 0.25%  − 0.05%  0.20% 
R03 2  10402.1 0.8 2  10363.59 1 2  10356.25  − 0.37%  − 0.44%  − 0.07% 
R04 2  10439.5 0.8 2  10332.77 1 2  10384.62  − 1.02%  − 0.53%  0.50% 
R05 3  15659.83 0.5 3  15597.47 0.9 3  15618.67  − 0.40%  − 0.26%  0.14% 
R06 3  15695.33 0.5 3  15624.17 0.7 3  15618.71  − 0.45%  − 0.49%  − 0.03% 
R07 3  15703.1 0.6 3  15585.10 0.6 3  15602.87  − 0.75%  − 0.64%  0.11% 
R08 3  15640.82 0.5 3  15561.98 0.8 3  15556.00  − 0.50%  − 0.54%  − 0.04% 
R09 4  21086.26 0.1 4  21004.52 0.1 4  21108.37  − 0.39%  0.10%  0.49% 
R10 4  21101.61 0.2 4  21005.23 0.1 4  21099.53  − 0.46%  − 0.01%  0.45% 
R11 4  21006.22 0.1 4  21069.37 0.1 4  21089.72  0.30%  0.40%  0.10% 
R12 4  21079.6 0.1 4  21090.62 0.1 4  21100.88  0.05%  0.10%  0.05% 
RC01 2  10310.85 0.3 2  10296.97 1 2  10266.83  − 0.13%  − 0.43%  − 0.29% 
RC02 2  10419.11 0.9 2  10323.85 1 2  10378.27  − 0.91%  − 0.39%  0.53% 
RC03 2  10297.75 0.7 2  10250.24 0.8 2  10223.54  − 0.46%  − 0.72%  − 0.26% 
RC04 2*  5836.5 0.8 2  10200.24 0.1 2*  5852.17  74.77%  0.27%  − 42.63% 
RC05 3  15420.14 0.4 3  15454.60 0.9 3  15434.72  0.22%  0.09%  − 0.13% 
RC06 2  10728.72 0.1 3*  11145.33 0.1 2  10765.53  3.88%  0.34%  − 3.41% 
RC07 2  10653.71 0.6 3  15460.19 0.1 2  10723.67  45.12%  0.66%  − 30.64% 
RC08 3  15449.51 0.4 3  15418.75 1 3  15392.56  − 0.20%  − 0.37%  − 0.17% 
RC09 4  20991.8 0.2 4  21010.57 0.2 4  21085.41  0.09%  0.45%  0.36% 
RC10 4  20890.32 0.2 4  20909.28 0.2 4  20878.90  0.09%  − 0.05%  − 0.15% 
RC11 4  20836.77 0.1 4  20866.71 0.1 4  20840.60  0.14%  0.02%  − 0.13% 
RC12 4  20840.82 0.2 4  20832.99 0.3 4  20859.05  − 0.04%  0.09%  0.13% 

Note: *: Only one drone of the 2nd sub-fleet is dispatched; **: only one drone from the 4th to the 9th sub-fleet are dispatched; γ1: (FS+ Total Cost - FS Total Cost)/(FS 
Total Cost); γ2: (FS+1 Total Cost - FS Total Cost)/(FS Total Cost); γ3: (FS+1Total cost - FS+ Total Cost)/(FS+ Total Cost). 
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wT
ik ≤ Wyik ∀k ∈ K, i ∈ I (19)  

aT
jk ≥ r+ aT

ik + sT
i +wT

ik + tT
ij − T

(
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ijk

)
∀k ∈ K, i ∈ I, j ∈ N : i ∕= j

(20)  

aT
ik ≥ tT

Oj − T
(
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Ojk

)
∀k ∈ K, j ∈ I (21)  

aD
ik ≤ T ∀k ∈ K, i ∈ N (22)  

aD
jk ≥ r+ aD

ik + sD
i + tD

ij − T
(

1 − xD
ijk

)
∀k ∈ K, i ∈ I, j ∈ N : i ∕= j (23)  

aD
ik ≥ tD

Oj − T
(

1 − xD
Ojk

)
∀k ∈ K, j ∈ I (24)  

aD
Ok ≥ aT

Ok ∀k ∈ K (25)  

aD
ik ≥ aT

ik − T(1 − yik) ∀k ∈ K, i ∈ I (26)  

aD
ik ≤ aT

ik + sT
i +Wyik +T(1 − yik) ∀k ∈ K, i ∈ I (27)  

FxT
ijk ≥ (tD

il + sD
l + tD

lj )z
D
lk ∀k ∈ K, i, l ∈ I : i ∕= l, j ∈ N : j ∕= l, j ∕= i (28)  

aD
jk ≥ aT

ik + sT
i +wT

ik + tD
il + sD

l + tD
lj − T(1 − yik) ∀k ∈ K, i, l ∈ I : i ∕= l, j ∈ N

: j ∕= l, j ∕= i
(29)  

∑

i∈S

∑

j∈S
xT

ijk ≤ |S| − 1 ∀S ⊆ I, k ∈ K (30)  

∑

i∈S

∑

j∈S
xD

ijk ≤ |S| − 1 ∀S ⊆ I, k ∈ K (31)  

(a) FS Mode (Total Cost: 10,271.19) (b) FS+ Mode (Total Cost: 10,171.39) 

(c) FS+1 Mode (Total Cost: 10,254.77) 

Fig. 9. Outputs of instance C03 for FS, FS+, and FS+1 Modes.  
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Table 4 
Results of all instances for VRPD and VRP (only trucks).  

Instance NC VRPD VRP Total Cost Differences 

FS mode FS+ mode FS+1 mode 

SF Total Cost ($) SF Total Cost ($) SF Total Cost ($) NT Total Cost ($) Δ1 Δ2 Δ3 

C01 50 1  5271.32 1  5273.96 1  5263.29 2  9266.531  43.1%  43.1%  43.2% 
C02 50 2*  5865.63 2*  5822.58 2*  5894.99 2  9611.51  39.0%  39.4%  38.7% 
C03 50 2  10271.19 2  10171.39 2  10254.77 2  9502.65  − 8.1%  − 7.0%  − 7.9% 
C04 50 2*  5817.60 2*  5824.24 2  10169.69 2  9437.06  38.4%  38.3%  − 7.8% 
C05 100 2  10223.31 2  10190.97 2  10178.78 3  13887.07  26.4%  26.6%  26.7% 
C06 100 2  10286.30 2  10296.50 2  10284.54 4  18431.90  44.2%  44.1%  44.2% 
C07 100 2  10431.35 2  10409.12 2  10406.04 4  18580.04  43.9%  44.0%  44.0% 
C08 100 2  10431.97 2  10433.25 2  10450.14 4  18592.18  43.9%  43.9%  43.8% 
C09 200 4  20604.90 4  20648.85 4  20601.45 7  32469.90  36.5%  36.4%  36.6% 
C10 200 4  20412.40 9**  18668.31 4  20364.22 6  27645.41  26.2%  32.5%  26.3% 
C11 200 4  20419.55 4  20424.10 4  20340.55 6  27790.61  26.5%  26.5%  26.8% 
C12 200 4  20539.88 4  20591.51 4  20524.22 7  32240.10  36.3%  36.1%  36.3% 
R01 50 2  10473.60 2  10383.55 2  10427.67 3  14175.99  26.1%  26.8%  26.4% 
R02 50 2  10377.84 2  10351.50 2  10372.25 2  9635.14  − 7.7%  − 7.4%  − 7.7% 
R03 50 2  10402.10 2  10363.59 2  10356.25 2  9798.68  − 6.2%  − 5.8%  − 5.7% 
R04 50 2  10439.50 2  10332.77 2  10384.62 2  9735.61  − 7.2%  − 6.1%  − 6.7% 
R05 100 3  15659.83 3  15597.47 3  15618.67 4  19021.77  17.7%  18.0%  17.9% 
R06 100 3  15695.33 3  15624.17 3  15618.71 4  18954.89  17.2%  17.6%  17.6% 
R07 100 3  15703.10 3  15585.10 3  15602.87 4  19074.54  17.7%  18.3%  18.2% 
R08 100 3  15640.82 3  15561.98 3  15556.00 4  19008.92  17.7%  18.1%  18.2% 
R09 200 4  21086.26 4  21004.52 4  21108.37 7  32866.56  35.8%  36.1%  35.8% 
R10 200 4  21101.61 4  21005.23 4  21099.53 7  32941.29  35.9%  36.2%  35.9% 
R11 200 4  21006.22 4  21069.37 4  21089.72 7  32902.45  36.2%  36.0%  35.9% 
R12 200 4  21079.60 4  21090.62 4  21100.88 7  32900.34  35.9%  35.9%  35.9% 
RC01 50 2  10310.85 2  10296.97 2  10266.83 2  9605.45  − 7.3%  − 7.2%  − 6.9% 
RC02 50 2  10419.11 2  10323.85 2  10378.27 2  9711.33  − 7.3%  − 6.3%  − 6.9% 
RC03 50 2  10297.75 2  10250.24 2  10223.54 2  9613.95  − 7.1%  − 6.6%  − 6.3% 
RC04 50 2*  5836.50 2  10200.24 2*  5852.17 2  9523.62  38.7%  − 7.1%  38.6% 
RC05 100 3  15420.14 3  15454.60 3  15434.72 4  18790.52  17.9%  17.8%  17.9% 
RC06 100 2  10728.72 3*  11145.33 2  10765.53 4  18826.16  43.0%  40.8%  42.8% 
RC07 100 2  10653.71 3  15460.19 2  10723.67 4  18938.56  43.7%  18.4%  43.4% 
RC08 100 3  15449.51 3  15418.75 3  15392.56 4  18791.35  17.8%  17.9%  18.1% 
RC09 200 4  20991.80 4  21010.57 4  21085.41 7  32801.24  36.0%  35.9%  35.7% 
RC10 200 4  20890.32 4  20909.28 4  20878.90 7  32592.93  35.9%  35.8%  35.9% 
RC11 200 4  20836.77 4  20866.71 4  20840.60 7  32690.16  36.3%  36.2%  36.2% 
RC12 200 4  20840.82 4  20832.99 4  20859.05 7  32617.13  36.1%  36.1%  36.0% 

Note: NC: number of customers; SF: number of sub-fleets; NT: number of trucks; *: one drone of 2nd sub-fleet is dispatched; **: one drone from the 4th to the 9th sub- 
fleet is dispatched; Δ1: (FS Total Cost - VRP Total Cost)/(FS Total Cost); Δ2: (FS+ Total Cost - VRP Total Cost)/(FS+ Total Cost); Δ3: (FS+1Total cost - VRP Total Cost)/ 
(FS+1 Total Cost). 

a) VRPD (Total Cost: $10,383.55)   b) VRP (Total Cost: $14,175.99)
Fig. 10. Best solutions for instance R01 solving a) VRPD with FS+ mode and b) VRP (only trucks).  
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xT
ijk, x

D
ijk, yjk, zD

ik ∈ {0, 1} ∀k ∈ K, i, j ∈ N : i ∕= j (32)  

gT
k , gD

ik, aT
ik, aD

ik,wT
ik ≥ 0 ∀k ∈ K, i ∈ N (33) 

The objective function (1) minimizes the total costs. The first term 
denotes the trucks’ travel cost, the second term represents the drones’ 
travel cost, the third term means that there is no travel cost of the drone 
when traveling on the truck, and the fourth and fifth terms consider the 
fixed costs of the trucks and drones, respectively. Constraints (2)-(6) 
ensure the flow balance of the trucks and drones. Constraints (2) and (3) 
determine routes for the trucks and Constraints (4) and (5) establish 
routes for the drones. Constraint (6) ensures that each dispatched truck 
from the depot has one corresponding drone. Constraint (7) indicates if a 
joint exists at node j, then the truck route must stop at this node. 
Constraint (8) indicates that if a joint exists at node j, then the corre-
sponding drone must arrive at this node. Constraints (9)-(11) denote 
that node j must be visited by only one vehicle k or by both vehicles if 
this node is a joint. Constraint (12) ensures that node j may be enabled as 
only one joint. 

Constraints (13)-(17) track the freight transported by trucks and 
drones. Constraint (13) ensures that the freight transported on a truck 
must not exceed its capacity. Constraint (14) ensures that the freight 
transported on a truck must be greater than or equal to the customer 
demands to be delivered in one vehicle route. Constraint (15) indicates 
that the freight on a drone must be equal to the customer demand at 
node j before visiting this node. Additionally, this constraint ensures that 
the freight on the drone must be zero before returning to the truck. 
Constraint (16) ensures that the customer demand of node j is served if 
this node is served by a truck. Constraint (17) ensures that all trucks and 
drones serve all the customer demands. 

Constraints (18)-(29) ensure that the vehicles satisfy the time re-
strictions. Constraint (18) ensures that the accumulated working time of 
a truck is less than or equal to the total shift time. Constraint (19) en-
sures that the waiting time of a truck at joint is less than or equal to the 
maximum waiting time. Constraints (20) and (21) maintain the time 
continuity of each truck. Constraint (22) ensures that the accumulated 
working time of a drone is less than or equal to the total shift time. 
Constraints (23) and (24) maintain the time continuity of each drone. 
Constraint (25) ensures that a drone returns to the depot later than the 
truck if the drone has a mission or at the same time if the drone travels 
on the truck. Constraints (26) and (27) ensure that the arrival time of a 
drone at a joint must be within the time frame of the truck (time between 
arriving and leaving the joint). Constraint (28) indicates that a drone’s 
flying time for one trip must be less than or equal to its maximum flying 
or working time. Constraint (29) ensures that the departure time of a 
drone from a joint corresponds to when the truck leaves the joint. 
Constraints (30) and (31) are the sub-tour elimination constraints for 
trucks and drones, respectively. Finally, constraints (32) and (33) indi-
cate the domain of the decision variables. 

In the FS mode shown in Fig. 1, the drone may visit only one 
customer while the accompanying truck travels from one customer to 
another customer. The use of drones is known to be much faster and 
cost-effective in delivering operations, as aforementioned. Therefore, 
the proposed FS method is revised to determine whether the total costs 
can be reduced if a drone visits more customers while the truck halts at a 
certain customer location. Hence, the drone has a third action in addi-
tion to the stationary and in-flight actions of the FS mode, as depicted in 
Fig. 3. This figure depicts that a truck waits at a customer’s location in 
node A while the drone visits customers × ,y, and z. 

A novel FS+ method was elaborated so that the drone serves multiple 
feasible customers as the truck waits at a customer location. A parameter 
π is designed to control the number of customers that a drone may serve 
during the truck’s stop. The mechanism should consider that the flight 
times of the drone between the truck and the customers plus the cus-
tomers’ service time must be less than or equal to the drone’s maximum 
flying or working time multiplied by parameter π. This constraint named 
“excess halt” is avoids an excessive truck idle time at one location. 

An additional novel method called FS+1 is proposed to prevent the 
excess halt situation, where the drone may visit at most one customer 
during the truck’s halt. Parameter π is also employed in this mode to 
control the maximum working time of the drone. Fig. 4 presents an 
example of the FS+1 method, where a drone serves a single customer u 
while the truck waits at node B. 

For both FS+ and FS+1 modes, Constraint (4) of the model formula-
tion presented above needs to be replaced by constraint (34) to allow the 
drone to serve multiple feasible customers while the truck waits at the 
same location, where M is a large positive number for the FS+ mode and 
M = 2 for the FS+1 mode. 
∑

j∈I:i∕=j

xD
ijk ≤ M ∀k ∈ K, i ∈ N (34) 

Constraint (19) is replaced by the constraint (35) to restrict the 
maximum waiting time of the truck at joint i. 

wT
ik ≤ πWyik ∀k ∈ K, i ∈ I (35) 

Constraint (27) is modified as constraint (36) to restrain the drone 
from arriving to joint i when the truck is not situated at such joint. 

aD
ik ≤ aT

ik + sT
i + πWyik +T(1 − yik) ∀k ∈ K, i ∈ I (36) 

Additionally, time constraint (37) is required for the FS+ and FS+1 

modes to restrict the departure of the drone after serving customer l from 
joint i and returning to the same joint i. 

aD
ik ≤ aT

ik + sT
i + πW + tD

il + sD
l + tD

li − T(1 − yik) ∀k ∈ K, i, l ∈ I : i ∕= l
(37)  

4. Methodology 

ACO is an ant algorithm inspired by the food-foraged behavior of 
ants to solve path-finding problems. In this algorithm, ants exploit 
pheromone information deposited on edges of a graph to obtain shortest 
paths between food sources and their nests [52]. Dorigo and Gambar-
della [53] presented a metaheuristic algorithm called the Ant Colony 
System (ACS) that is constituted by three main procedures: selection 
scheme, local pheromone update, and global pheromone update. Our 
solving process of the VRPD is based on ACS, considering that each ant 
trip represents a vehicle route. First, the mechanism for selecting edges 
on a route is described by Eq. (38), in which an ant at node i chooses to 
visit the next customer j probabilistically favoring those nodes that 
connect short edges and larger amount of pheromone. 

S =

⎧
⎨

⎩

max

j ∈ Ω
{Attij} if q ≤ q0

pij otherwise

(38)  

where Ωi is the set of feasible customers to be served by an ant at node i, 
parameter q0 is a predefined real number (0 ≤ q0 ≤ 1) to determine 
whether the ant chooses to explore new edges or exploit a priori and 
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accumulated knowledge, q is a random number ranged between 0 and 1, 
pij is the state transition probability, and Attij indicates the attraction of 
an edge between nodes i and j for an ant located at node i using Eq. (39). 

Atti,j = (τij)
α
(ηij)

β (39)  

where τij and nij denote the pheromone intensity and visibility, respec-
tively. The visibility is defined as the reciprocal of the distance between 
nodes i and j multiplied by M, where M is a constant used to adjust the 
visibility value. Additionally, α and β are used for weighting the pher-
omone intensity and visibility, respectively. The probabilistic choice of 
the next edge for an ant will be updated as the ant decides to explore a 
new edge according to Eq. (33). The probability of an ant selecting a 
feasible edge between nodes i and j is calculated using the state transi-
tion probability pij with Eq. (40). 

pij =

⎧
⎪⎨

⎪⎩

Attij∑

k∈Ωi

Attik
∀j ∈ Ωi

0 ∀j ∕∈ Ωi

(40) 

Second, the pheromone level on the edges is modified once an ant 
completes its tour by applying the local pheromone update rule with Eq. 
(41). 

τij = (1 − ρ)∙τij+ ρ∙τ0 (41)  

where τij is the pheromone level on the edge between nodes i and j, ρ is a 
parameter that indicates the pheromone evaporation rate, and τ0is the 
initial pheromone trail intensity. During this local pheromone update, 
proportion ρ of the previously deposited pheromone is evaporated, and 
proportion (1 – ρ) of the pheromone level remains on the edges. 

Third, the global pheromone update is triggered once all ants have 
completed their tours. In this update, the pheromone intensity is reset on 
all edges to encourage the ants to search for routes in the vicinity of the 
current best route. Subsequently, an extra amount of pheromone is 
allocated on the edges using Eq. (42), constituting the current best so-
lution. In this equation, Jψgl is the cost of the current best route ψgl. 

τij = (1 − ρ)τij + ρ/Jψgl (i, j) ∈ ψgl (42) 

Fig. 5 presents the flowchart of the ACO solving process for solving 
the VRPD. First, a graph is created that contains all nodes and edges, and 
the indices for the ants and iterations are initialized with zero values. 
Constants A and ITE indicate the total number of ants and total number 
of iterations, respectively, and ψ denotes the solution obtained by the 
current ant. When an ant is initialized, the vehicles are dispatched one 
by one until all the customers are served. In this case, a vehicle or sub- 
fleet denotes a composition of one truck and one drone (i.e., truck-drone 
pair). The drone actions are determined by the parameter z. Parameter ς 
is a randomly generated number, and its value ranges between 0 and 1. 
If ς < z holds, then the drone will travel on the truck until the next 
customer; otherwise, the drone has the mission to serve the following 
customer, and subsequently, return to the truck. The drone’s departure 
time at a joint is the same as the truck’s departure time. When an ant 
completes its tour by serving all customers, the solution found is 
compared and replaced by the existing optimal solution if this solution is 
better than the optimal solution. The local pheromone update mecha-
nism is triggered to update the pheromone on the edges while additional 
ants are being dispatched. Once all ants have been dispatched, the global 
pheromone update mechanism is executed and a new iteration is initi-
ated. The solving process is stopped as soon as the total number of 

iterations is equal to the predefined number ITE. If N is the total number 
of customers, then the time complexity of the ACO is O(N2) since it is 
executed N times to serve all customers. 

This research employs the 2-opt method for the local search as soon 
as the solving process finds a solution. Fig. 6 illustrates the application of 
the 2-opt method to a truck-drone route. Conventionally, the new route 
gained by this method is to reverse the order of the customers between 
customers a and d in the truck route. However, customers x and z in the 
drone route must be reversed as well to maintain the solution feasibility 
for both truck and drone routes. 

Subsequently, the drone route must be examined to verify if any of 
the drones violate the arrival time rule (See Fig. 2). If the rule is violated, 
then the solution must be abandoned. Otherwise, the cost will be 
recalculated to determine if a better solution has been found. This 
method is applied to any truck-drone route iteratively until a better 
solution is yielded or remains the same if all combinations are verified. 

5. Computational tasks 

Since the VRPD is a FVRP type, we adopted the benchmark created 
by Huang et al. [2] to verify the performance of the proposed ACO 
solving process. The dataset consists of three subsets, in which the 
customers are located in clusters (C), randomly (R), a combination of 
random and clusters (RC). Each subset contains 12 instances with 50, 
100, and 200 customers. The instances of each subset are indexed from 
01 to 12. Customers ́ demands and locations are given. The maximum 
truckload is set to 500 units of capacity, and the maximum working time 
of the truck is set to 480 units of time. The speed ratio of the drone and 
the truck is 50/35 (1.43). The fixed cost of one truck and one drone is set 
to 4360 and 436 units of money, respectively. Additionally, the travel 
cost per unit of distance of a truck and a drone are 3.3 and 0.33, 
respectively. If a drone serves a customer, then the service time is 
assumed to be equal to half of the truck’s service time. Moreover, the 
maximum working time of a drone is set to 30 units of time. The truck’s 
waiting endurance is set to 15 units of time, and the recovery time of the 
drone is 1 unit of time. The parameter settings of ACO are as follows: 
parameter q0 is equal to 0.3, evaporation rate ρ is equal to 0.1, and the 
number of ants and iterations are equal to 30 (A = 30, ITE = 30). In 
addition, the parameter z has a maximum value of 0.3. 

5.1. Comparison between ACO and optimal solutions for small instances 

To assess the performance of the proposed ACO solving process, 18 
small-size problems (grouped in R, C, RC) were designed and solved to 
optimality by using IBM CPLEX 12.10 solver. Table 1 presents the output 
results for comparing the proposed ACO solving process with the opti-
mization model for the VRPD (FS mode) for small instances between 5 
and 30 customers. This table shows that only one sub-fleet (i.e., one 
truck-drone pair) is required for both ACO and exact solutions for all 
instances, and that ACO yields equal or very similar total costs (within 
1%) to the mathematical model results for most instances. Furthermore, 
the CPU time required to obtain the ACO results is considerably smaller 
than the exact results. Optimal solutions are obtained for 5 and 10 
customers for all group distributions, and low integrality gap values of 
the feasible solutions are obtained after 7200 s of execution for 15 or 
more customers. Since optimal solutions are difficult to obtain for larger 
instances (VRPD is NP-hard), these results suggest that the proposed 
ACO provides competitive solutions within reasonable computing times. 
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5.2. ACO results with large instances 

Table 2 presents the best output results for all instances with the 
three group distributions using the proposed ACO solving process. After 
solving with different α and β combinations, the best result of each 
combination is reported in this table for each instance. The results for 
instances C02, C04, and RC04 require two sub-fleets, but the second sub- 
fleet (denoted with an asterisk) is comprised by only one drone that has a 
mission to serve a single customer. Fig. 7a), 7b), and 7c) show the so-
lution for instances C02, C04, and RC04, respectively. In these solutions, 
after the first sub-fleet returns to the depot, only one customer still needs 
to be serviced (customer #33 for instance C02, customer #42 for 
instance C04, and customer #11 for instance RC04). Thus, a second sub- 
fleet consisting of only one drone (truck is not required) is launched 
from the depot to serve this customer and then is returned to the depot. 

The following managerial insights are withdrawn from the results in 
Table 2: i) the traveled distances, the number of sub-fleets, and the 
execution time tend to increase with the number of customers in each 
instance; ii) the total costs for instances with R group are higher than 
instances belonging to the C group (on average 34.7% higher for 50 
customers and 34.0% higher for 100 customers) and RC group (on 
average 11.6% higher for 50 customers and 16.7% higher for 100 cus-
tomers), particularly due to larger distances between randomly located 
customers; iii) on average, there are relatively low differences (less than 
3%) between the total costs of the three group distributions for large 
instances with 200 customers; and iv) drones must travel longer dis-
tances than the trucks to serve their assigned customers since in this 
study the total costs of the drone are equal to 10% of the total costs of the 
truck, and the drones are 1.43 times faster than the trucks. 

5.3. Comparison results using FS, FS+, and FS+1 modes 

Fig. 8a) presents the output result of instance C01 for π = 1 using FS+

mode, representing a maximum working time of the drone of 30 units of 
time with a total cost is 10,541.86. This result is much larger than the 
solution obtained with the FS method (5,271.32 in Table 2). In this case, 
the truck’s efficacy is not fully employed since the truck idles for long 
periods of time at customer locations. There may be an excess halt while 
trying to take advantage of the drone’s higher speed and lower travel 
cost. Thus, the usage of the truck and the drone must be balanced to 
approach the best cost-effectiveness in the results. The excess halt situ-
ation is controlled by adjusting the dronés maximum working time at a 
node through parameter π. The number of customers served by a drone 
during a truck’s halt can be reduced by decreasing this parameter. For 
example, if π is reduced to 0.3 for instance C01, then the trucḱs halt is 
decreased, resulting in a total cost of 5,273.96 for FS+ mode, as shown in 
Fig. 8b). Both truck and drone are assigned customers in a more 
balanced manner. The total costs for the benchmark with parameter π 
varying between 0.1 and 1 using FS+ and FS+1 modes are presented in 
Tables A1 and A2, respectively, in the appendix. 

Table 3 lists the results of the benchmark solved by FS, FS+, and FS+1 

methods. Different values of π were tested, and the best results for each 
instance are reported in bold. These results suggest that, for the studied 
instances, FS+1 is better suited for subset C, FS+ for subset R, and FS for 
subset RC since 58.3% of the instances in the C group presented the 
lowest cost with the FS+1 method, 58.3% of the instances in the R group 
with the FS+ method, and 50% of instances in the RC group with the 
FS+1 method. On average, larger distances among customers in the R 
group favor the use of drones due to their higher speed and more 
economical cost than the trucks, as in the FS+ mode. In the RC group, 
different distances are perceived between the customers. Hence, the 
dispatching truck-drone units used in the FS mode are sufficiently 
flexible to serve customers considering that the drones must arrive after 
the trucks at the customer locations. Lastly, when the customers are 
clustered in space, the drones accommodate their visits to a single 
customer while the trucks wait at a customer location. 

Overall, Table 3 shows that the differences between the results (i.e., 
γ1, γ2, and γ3) are less than 1%, except for those instances that require 
the use of an additional truck or sub-fleet (instances C04, RC04, and 
RC07). For example, for instance C04, the total cost increases in 74.81% 
when using FS+1 mode with respect to the FS mode. This significant 
increase in the total costs is due particularly to the fixed costs associated 
to the use of an additional truck for servicing the customers. In the FS+1 

mode, the drone can serve at most one customer while the truck is 
halted. Therefore, in this instance, a second truck must be dispatched to 
serve the additional customers. 

Additionally, in Table 3, the FS+ result of instance C10 shows that 
three truck-drone units and six single drones are required for servicing 
the customers. In this particular case of clustered customers, many 
customers are rapidly served by six drones directly from the depot 
instead of collaborating with a truck. 

To further compare the methods, Fig. 9a), 9b), and 9c) illustrate the 
output results of instance C03 with FS, FS+, and FS+1 modes, respec-
tively. The truck and drone travel distances are equal to 180.63 and 
251.8, respectively, for FS mode; 109.11 and 664.67, respectively, for 
FS+ mode; and 163.87 and 369.63, respectively, for FS+1 mode. When 
comparing between the modes, the FS mode uses mostly the truck, and 
the FS+ mode takes more advantage of the drone. Additionally, the FS+1 

mode seems more balanced in the usage of the truck and the drone than 
the other two modes. For this specific instance, the FS+ mode yields the 
best solution with the lowest total cost of 10,171.39. 

5.4. Comparison of VRPD with VRP 

A comparison was performed between the VRPD and the VRP (truck 
only) using the benchmark, as shown in Table 4. For large instances with 
over 100 customers, this table shows that the cost-savings are on average 
more than 30%, suggesting that the VRPD produces a significant 
improved cost-savings compared to the typical VRP with truck-only 
delivery, similarly to Sacramento et al. [29]. For example, Fig. 10a) 
and 10b) show the best solutions for instance R01 using FS+ mode and 
VRP, respectively, where on average a cost-savings of 26.4% exists when 
servicing customers with two truck-drone units instead of three trucks. 
However, when the instances are smaller (50 customers), there is a 
tendency for the VRP to be more economical than VRPD. A possible 
cause of this trend is that the dronés parameter values that are used to 
solve the VRPD with the benchmark may differ from those employed in 
the real world. For example, the ratio between the total costs of the 
drone and truck are set to 1/10, which may vary depending on the type 
and brand of drone. Further research is required to have a deeper un-
derstanding of the cost differences between VRP and VRPD for small 
instances. 

6. Conclusions 

This research contributes to the existing literature by proposing an 
ACO algorithm to solve the VRPD with the FS mode. The ACO solving 
process for the VRPD yields the number of sub-fleets (i.e., dispatching 
truck-drone units) and optimal routes while minimizing total costs. Test 
experiments were implemented to examine the ACO performance in the 
resolution of the VRPD for instances with different sizes and group 
distributions (R, C, and RC). The results provide managerial insights 
related to the the total cost variation depending on the number and 
locations of customers. Overall, the drone is less expensive and faster 
than the truck. If the drone is fully utilized, then the drone is able to 
reduce the total logistic costs and improve the performance of delivery 
operations. When the drone accompanies the truck, the coordination of 
drone and truck has to be well-designed so that the delivery operations 
can be facilitated. This study provides promising truck-drone coordi-
nation operations to take full advantage of the drones. 

Two novel modes are elaborated to solve the VRPD, which consists of 
servicing multiple feasible customers (FS+ mode) and only one feasible 
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customer (FS+1 mode) by drones while the trucks wait at customer lo-
cations. The results indicate that each mode has its merit and highlights 
another contribution of this study. The FS+1 mode performs better with 
instances from the C group, the FS+ mode with instances from the R 
group, and the FS mode with instances from the RC group. 

The VRPD results with the three modes are compared with the VRP 
using the benchmark. Overall, the VRPD presents cost-savings over 30% 
for large size instances when compared to the VRP. In addition, the ACO 
results were compared to the optimal results for small instances, yielding 
promising results in a reasonable time period. 

Some situations should be considered for future research. First, a 
drone may not fulfill a customer’s need in one delivery, which means 
that a customerś demand may be greater than the drone’s capacity. 
Additionally, some customers may be served only by a truck when the 
drone does not have a landing place or the customer is located in a no- 
flight zone. Different drone brands have different unit travel costs 
depending on their flying ranges, speeds, and capacities. These dis-
criminations between drones could conduce to different conclusions. 
Further research should also investigate situations when a truck is 
accompanied by more than one drone, and when a drone is allowed to 
return to a different truck after servicing customers. 
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Appendix A 

Tables A1 and A2. 

Table A1 
Total costs per instance for different π values using the FS+ mode.  

Instance Parameter π 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

C01  5285.60  5284.70  5273.96  10100.71  10038.84  10060.03  10052.39  10018.52  5696.90  10541.86 
C02  5914.00  5822.58  10225.15  10235.13  10257.28  10278.11  10250.27  10221.80  10208.48  10713.18 
C03  10299.24  10284.46  10254.18  10244.67  10251.04  10217.84  10182.16  10171.39  10204.25  10705.42 
C04  10207.01  10216.05  10184.87  10166.58  10182.67  10127.25  10137.42  10153.17  10176.00  5824.24 
C05  10221.95  10192.48  10190.97  15148.74  15123.63  15147.93  19984.29  15690.98  15655.09  16213.75 
C06  10311.48  10296.50  10301.30  15208.65  15148.14  15130.63  19972.89  15650.44  15610.49  15654.41 
C07  10456.58  10423.54  10409.12  15349.50  15263.95  15265.18  20160.54  20140.38  15747.72  16293.40 
C08  10433.25  10460.35  15313.41  15186.08  15308.32  15320.26  15788.02  20113.10  15682.45  15714.00 
C09  20648.85  20667.87  21034.87  25429.71  30330.51  35234.08  30851.44  31339.06  27161.93  27660.45 
C10  20435.80  20413.25  20373.85  25240.48  30097.20  25689.89  30734.03  26807.92  22528.54  18668.31 
C11  20504.54  20424.10  20442.90  25425.99  30331.78  30355.23  35241.95  30798.55  26622.29  27484.13 
C12  20591.50  20591.82  25397.92  25219.69  30260.74  25952.31  30724.47  30789.60  26376.35  26967.95 
R01  10499.46  10499.42  10498.07  10479.06  10453.70  10430.48  10383.55  10425.54  15220.54  10884.99 
R02  10399.23  10403.61  10402.44  10382.49  10407.75  10389.66  10378.15  10351.50  15255.69  10788.63 
R03  10426.47  10403.20  10418.35  10390.32  10418.70  10382.10  10384.02  10363.59  10809.67  15228.61 
R04  10431.17  10452.57  10473.00  10438.72  10416.35  10365.02  10388.56  10332.77  10480.25  10749.55 
R05  15705.21  15727.59  15699.53  15626.79  15597.47  15715.47  20422.46  20461.48  20898.31  16471.71 
R06  15718.97  15720.92  15679.18  15655.25  15624.17  20527.27  20473.22  20443.22  16084.67  20923.67 
R07  15728.19  15714.97  15706.66  15641.30  15588.83  15585.10  20394.98  20400.48  16137.22  16462.32 
R08  15712.09  15695.41  15641.93  15633.81  15561.98  15654.66  20472.82  20471.20  16065.60  20920.24 
R09  21004.52  21105.40  25884.93  25795.72  30673.60  35535.01  31180.70  36068.72  31784.86  32260.34 
R10  21101.81  21005.22  25928.31  25898.44  30706.13  35626.18  31325.47  36095.37  31784.15  32272.48 
R11  21069.37  21083.13  25864.31  25852.43  30709.66  35596.45  35613.55  36130.99  31832.93  32280.49 
R12  21090.62  21135.80  25891.16  25866.72  30721.01  35597.05  31222.93  36079.08  32191.60  27839.18 
RC01  10310.36  10325.87  10296.97  10305.54  10305.88  10327.01  10320.43  10340.69  10388.97  10737.77 
RC02  10432.58  10433.55  10469.09  10424.30  10377.30  10351.66  10336.16  10349.58  10323.85  10797.80 
RC03  10347.52  10285.49  10293.11  10319.89  10301.99  10289.33  10250.24  10261.69  10256.20  10739.20 
RC04  10248.32  10222.27  10263.81  10207.43  10250.82  10203.36  10230.81  10200.24  10220.92  10708.21 
RC05  15478.60  15467.77  15456.92  15454.60  15459.72  15612.13  20330.10  20283.64  15845.54  16396.02 
RC06  11145.33  11155.50  15529.49  15522.81  15490.94  15459.31  20336.56  15919.91  15907.21  15916.00 
RC07  15586.89  15486.21  15531.49  15543.71  15502.80  15460.19  20309.85  20288.85  15833.11  15944.58 
RC08  15474.28  15485.85  15441.90  15418.75  15501.08  15445.07  15482.22  20250.31  15792.19  16337.90 
RC09  21030.81  21010.57  25797.43  25738.75  30563.04  35495.31  31095.99  36021.88  31655.46  27778.11 
RC10  20918.74  20909.28  25710.73  25653.64  30492.77  26182.07  30928.11  30964.88  26586.26  26998.23 
RC11  20866.71  20883.10  25722.98  25680.07  30562.91  30525.37  35418.26  30916.72  31443.98  22791.03 
RC12  20860.38  20832.99  25716.00  25647.80  30561.39  30510.39  26130.85  30891.21  26455.39  26910.50 

Note: Numbers in bold indicate lowest total cost per instance. 
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Table A2 
Total costs per instance for different π values using the FS+1 mode.  

Instance Parameter π 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

C01  5266.275  5282.157  5263.287  10074.08  10092.91  10095.68  10087.71  10102.17  10100.71  10104.21 
C02  5894.986  5945.977  10232.95  10237.5  10254.28  10233.78  10221.46  10241.93  10268.36  10264.23 
C03  10294.54  10287.16  10260.86  10277.8  10266.82  10256.38  10256.34  10259.65  10260.49  10254.77 
C04  10216.25  10216.18  10197.34  10195.92  10181.36  10174.41  10169.69  10175.76  10186.78  10184.51 
C05  10235.56  10196.59  10207.64  10226.03  10178.78  10245.46  10241.70  10242.25  10238.63  10204.31 
C06  10306.52  10308.78  10292.00  10284.54  10751.80  10708.78  10697.91  10352.20  10711.94  10710.34 
C07  10455.82  10423.16  10406.04  10423.57  10407.40  10853.98  10826.00  15269.54  10889.35  10839.72 
C08  10450.14  10455.44  10960.29  15310.63  15293.19  15307.43  15262.45  15267.01  15270.58  15268.88 
C09  20670.58  20619.1  20601.45  20707.05  25494.26  25512.24  25500.65  25508.57  25471.37  25454.14 
C10  20417.68  20416.77  20366.86  20371.83  20388.50  20365.97  20364.22  20391.76  20386.87  20398.23 
C11  20515.40  20459.88  20370.26  20354.64  20340.55  20366.87  20371.28  20360.91  20349.83  20376.30 
C12  20524.22  20595.54  20557.27  20590.42  20527.06  20645.68  25409.19  25344.85  20920.34  25366.91 
R01  10490.40  10511.77  10490.00  10482.50  10453.99  10449.40  10427.67  10436.20  10428.35  10442.79 
R02  10409.33  10412.21  10407.66  10390.08  10404.40  10404.67  10410.24  10403.66  10414.66  10372.25 
R03  10412.08  10429.22  10421.67  10410.17  10419.45  10396.55  10373.98  10368.54  10356.79  10356.25 
R04  10479.41  10457.78  10450.78  10438.24  10403.18  10396.49  10412.27  10395.38  10390.88  10384.62 
R05  15696.21  15712.48  15709.48  15650.72  15652.20  15659.72  15667.30  15667.38  15618.67  15633.31 
R06  15729.35  15724.98  15719.84  15660.73  15670.14  15642.90  15618.71  15656.26  15630.97  15661.55 
R07  15751.21  15731.77  15614.89  15632.59  15674.67  15602.87  15611.33  15660.00  15637.63  15634.00 
R08  15677.90  15677.75  15655.31  15615.27  15625.23  15618.53  15609.22  15556.00  15593.28  15609.65 
R09  21108.37  21152.16  25868.47  25792.33  25881.80  25839.43  25851.92  25849.11  25846.45  25846.31 
R10  21099.53  21107.17  25918.52  25906.76  25866.71  25899.06  25916.14  25905.55  25897.77  25914.28 
R11  21089.72  21226.06  25861.73  25858.71  25835.62  25863.08  25792.43  25833.37  25849.51  25851.53 
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RC11  20840.60  20849.52  20921.16  21227.02  25696.25  25640.00  25641.05  25632.92  25629.66  25659.03 
RC12  20879.49  20891.41  20859.05  20895.56  25665.78  25650.64  25667.50  25687.71  25621.56  25688.31  
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