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Trajectory Prediction Neural Network and Model
Interpretation Based on Temporal Pattern Attention

Hongyu Hu , Member, IEEE, Qi Wang , Ming Cheng, and Zhenhai Gao

Abstract— High-precision vehicle trajectory prediction can
enable autonomous vehicles to provide a safer and more com-
fortable trajectory planning and control. Unfortunately, current
trajectory prediction methods have difficulty extracting hidden
driving features across multiple time steps, which is important
for long-term prediction. In order to solve this shortcoming, a
temporal pattern attention-based trajectory prediction network,
named TP2Net, was proposed, and vehicle of interest inception
was established to construct an interaction model among vehicles.
Experimental results show a 15% improvement in predictive
performance over the previous best method under a 5-s prediction
horizon. Moreover, in order to explain why temporal pattern
attention was adopted and demonstrate its ability to extract
hidden features that are intuitive to human beings, a layer inter-
pretation module was included in TP2Net to quantify the mutual
information contained between the input and the intermediate
layer output tensor. The results of experiments using naturalistic
trajectory datasets indicated that temporal pattern attention can
extract three important stages in lane changing, showing that
temporal pattern attention can effectively extract hidden features
and improve prediction accuracy.

Index Terms— Trajectory prediction, hidden driving features,
temporal pattern attention, model interpretation.

I. INTRODUCTION

AN AUTONOMOUS vehicle is understood to have the
ability to perceive more comprehensive social knowl-

edge in the driving context than human drivers through its
installed sensors. Based on the perception, the autonomous
vehicle needs to infer the intention of surrounding agents
and make high-precision estimates of their future trajectories
[1], [2]. Trajectory prediction can generally help autonomous
vehicles to better understand the future driving environment
and determine the subsequent tactical maneuver [3]. However,
the multi-modality of driving behavior and the complexity of
the driving context make the task of trajectory prediction a
considerable challenge [4].

In fact, in a specific driving context, the tactical intention
of a vehicle driver has a significant influence on their multi-
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modal driving behavior [5], [6]. The tactical intention is
defined as the quick decision made by a driver to achieve the
corresponding goal through a series of driving operations [1],
[7]. In other words, the driver of a vehicle must maintain
an understanding of the driving context in order to perform
reasonable and comfortable driving operations. Therefore, the
driving intention and maneuvering pattern of a driver, extracted
from their interaction with the surrounding agents and the
mobility of the target vehicle, may be helpful for enabling
autonomous vehicles to make longer horizon predictions.

Vehicle trajectory prediction is a multivariable time series
(MTS) task for which recurrent neural networks (RNNs) are
often used to predict the sequence of events [8]. Unfortunately,
due to a lack of long-term dependency management [9], there
are several weaknesses in the extraction of long-term depen-
dency relationships using RNNs that may affect trajectory
prediction. Generally, a driver does not execute their intention
immediately when it appears but executes the previous driving
intention after preparing the driving control action [7]. It takes
an average of 1 to 4 s to execute a driving maneuver after
the appearance of a driving intention [10], [11]. Existing
RNNs generally have weak recognition ability across multiple
time steps, so it is difficult to capture the hidden long-term
pattern between the driving intention and subsequent maneuver
[9], [12]. In order to address these problems, a Temporal Pat-
tern attention-based Trajectory Prediction Network (TP2Net)
was proposed in this study and introduced into the trajectory
prediction task to extract the hidden driving features pertaining
to the target vehicle. This attention mechanism is effective
because it can span multiple time steps, which is particularly
suitable for the extraction of hidden driving intention and
maneuver patterns. Moreover, considering that the interaction
between the target vehicle and the surrounding agents, the
use of vehicle of interest (VOI) inception was proposed
based on the GoogLeNet [13], [14], simplifying the input to
focus on the surrounding vehicles with sufficient interaction
influence.

Although trajectory prediction neural networks, similar to
TP2Net, have been shown to provide better performance and
accuracy. Such deep learning models are often considered to be
black boxes because they cannot provide a meaningful expla-
nation of how a prediction or decision was made [15], [16].
Indeed, trust increases when a model is shown to base its
decisions on environmental aspects that appear reasonable to
a human [17]. The proposed TP2Net extracts hidden driving
features through temporal pattern attention (TPA), but without
a sufficient transparency, the reliability of this method would

1558-0016 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Soonchunhyang Univ. Downloaded on February 02,2024 at 03:24:43 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8083-6403
https://orcid.org/0000-0001-8260-3574
https://orcid.org/0000-0002-4623-3956


HU et al.: TRAJECTORY PREDICTION NEURAL NETWORK AND MODEL INTERPRETATION BASED ON TPA 2747

be considered relatively poor. Therefore, a trajectory prediction
network interpretation module was proposed to quantify the
relative importance between the input and output tensors of the
TPA model. Neural network interpretation methods are divided
into active approach (actively changes the network architecture
or training process) and passive approach (post hoc explain
trained neural networks). The proposed interpretation method
belongs to passive approach [18]; that is, it will not affect the
training of the model. By using information entropy theory
[15], the importance of each time step of the trajectory to
the prediction can be quantified through the trained TP2Net.
Although it is difficult to directly interpret this importance
as the driver’s intention–maneuver pattern, improving the
interpretability of the trajectory prediction network can quan-
titatively represent the importance of each time step before
a specific driving maneuver, providing a theoretical basis for
the study of personalized and anthropomorphic autonomous
driving.

The main contributions of this study can be summarized as
follows:

1) A trajectory prediction network, TP2Net, was proposed
based on TPA, which is more suitable for extracting
hidden multimodal driving features and solves the weak-
ness of RNNs in managing short-term dependencies.
In addition, the Sigmoid function was adopted to replace
the Softmax function in order to improve the mul-
tiple temporal pattern extraction ability. Finally, VOI
inception was used to better extract the social context
knowledge.

2) An interpretation module was proposed to explain the
mutual information between TPA input and output ten-
sors. The theory of information entropy was adopted,
and the perturbation method was then used to measure
the information extracted by TPA under specific driving
maneuvers.

3) The relative importance of each time step in the process
of left and right lane changing was studied, and mul-
tiple response peaks were extracted. Three important
stages of lane changing were identified using a relative
importance line chart of lane change data, and were
shown to correspond to the statistical data describing
vehicle driving dynamics. It was thus proven that TPA
can effectively extract hidden driving features across
multiple time steps.

The remainder of this paper is organized as follows.
Section II provides a review of literature pertaining to the
existing research on vehicle trajectory prediction and network
interpretation. Section III describes the methodology of the
present study, including the overall framework and details. The
experimental settings, results, and evaluations are described in
Section IV. Finally, Section V presents concluding remarks
and highlights the scope for future work.

II. RELATED RESEARCH

Many researchers have investigated trajectory prediction
from different perspectives, including conventional machine
learning methods and deep learning methods. The typically

employed neural network interpretation methods are the gra-
dient method and perturbation method. This section briefly
discusses previous research into trajectory prediction related
to this study as well as the interpretation of neural networks.

A. Methods of Trajectory Prediction

1) Conventional Machine Learning Methods: Kinematic
and dynamic parameters were often used in early vehicle
trajectory prediction tasks. For example, the constant yaw rate
and acceleration model has often been employed because it
assumes that the yaw rate and acceleration will not change
suddenly in a short period of time during smooth driving [19].
Bayesian filters such as the unscented Kalman filter and
extended Kalman filter have also been used as models for tra-
jectory prediction. However, these models perform poorly on
long-term prediction tasks because the short-term assumptions
no longer hold for the long-term prediction horizon [20].

Because driving maneuvers can better reflect a driver’s long-
term intentions, many researchers have proposed models based
on driving maneuvers to improve the accuracy of long-term
horizon trajectory prediction. Driving maneuver recognition
is mainly based on historical vehicle trajectories and vehicle
motion states. For example, Houenon et al. [21] proposed a
model combining a constant yaw rate and acceleration model
with driving maneuver recognition. The optimal trajectory was
selected from the trajectory cluster predicted by this model
according to the recognized driving maneuver. The hidden
Markov model (HMM) [22], Gaussian process regression
[23], support vector machine [26], and probabilistic finite
state machine [24] have also been used for driving maneuver
recognition. These methods mainly focus on the driving state
and maneuvering of the target vehicle. Unfortunately, they
ignore any interaction with surrounding vehicles, and exhibit
a large prediction error in complex traffic contexts.

Combining the interaction model with driving maneuver
recognition solves the problem of accounting for the interac-
tion between the target vehicle and surrounding vehicles. Such
combined methods mainly assign different weights according
to the degree of influence of each surrounding vehicle in
order to focus on those that are more important to the target
vehicle under a specific driving context [25]. For exam-
ple, Deo et al. [20] combined the confidence pertaining to
each driving maneuver using the HMM with the feasibility
of each trajectory to obtain an energy function that was
minimized to obtain the optimal trajectory predicted by the
interactive model. However, the hand-crafted features used
by conventional methods have difficulty characterizing multi-
modal driving patterns, so the accuracy of their long-term
horizon trajectory predictions remains relatively low.

2) Deep Learning Methods: Most recent studies of trajec-
tory prediction have been based on network structures such
as the RNN or long short-term memory (LSTM) due to
their ability to extract hidden dependencies from the con-
text time steps. These structures perform the same operation
on each input item of the sequence while considering the
calculation of the previous input item [9]. Since vehicle
trajectory prediction is a sequence-to-sequence task, it is very
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common to adopt the LSTM encoder/decoder framework for
this task [27]. For example, Deo and Trivedi [28] embedded
convolutional social pooling into this framework and used
the social tensor to encode the past motion state of the
surrounding vehicles; Lee et al. [29] proposed a conditional
variational auto-encoder framework that produced a set of
different prediction hypotheses given observations of past
trajectories to capture the multi-modality of driving behaviors;
Hou et al. [30] proposed a structural-LSTM to capture the
high-level dependencies between multiple interactive vehicles.
These LSTMs share their cell states and hidden states with the
spatial-adjacent LSTM through radial connection, and repeat-
edly analyze their own and other output states in a deeper
layer. In another approach, Messaoud et al. [3] proposed a
multi-head attention-based LSTM encoder/decoder framework
to quantify the relative importance of surrounding vehicles
during driving. In addition, generative methods such as the
generative adversarial imitation learning (GAIL) [31] and
generative adversarial network (GAN) [32] models have also
been used for trajectory prediction.

There has also been a great deal of research focusing on
the coding of the target vehicle and surrounding vehicles to
improve the accuracy of trajectory prediction. The occupancy
grid map has been widely adopted for probabilistic localization
and mapping in robotics, as it can analyze trajectory uncer-
tainty [33]. Zhao et al. [32] accordingly proposed multi-agent
tensor fusion (MATF), which encodes the scene context and
multiple agents into spatial feature maps, and can be trained
and represented in an end-to-end manner through a flexible
network. Furthermore, graph convolution network (GCN)-
based methods are increasingly being applied to model inter-
actions. Jeon et al. [34] adopted graphs to encode the behavior
of surrounding vehicles in a manner fully scalable to the
number of surrounding vehicles, minimizing the coding time
complexity of each scene. Shi et al. [35] proposed the Sparse
GCN (SGCN) to model interactions for pedestrian trajectory
prediction. Redundant and useless interactions are explicitly
eliminated, which improves the efficiency and performance of
interaction extraction.

B. Interpretation of Neural Networks

Among the existing model interpretation methods, instance
level interpretation is most suitable for explaining what fea-
tures activate the specific neurons of a neural network to cause
a specific prediction [15], allowing for study of the attributes
of the trajectory prediction model in this study. There are
two main instance level interpretation methods: the gradi-
ent method and the perturbation method. The gradient-based
method uses backpropagation to calculate the partial deriv-
atives of each class relative to the input of the neural net-
work. By calling the gradient operator several times [36],
the integrated gradient evaluates the global importance of
each feature to the prediction rather than the local sensitivity.
In order to reduce the influence of high-frequency noise in
backpropagation, Smilkov et al. [37] proposed the use of a
smooth gradient. The average image formed by many small
disturbances of a given image has a significant smoothing

effect that can allow for more intuitive interpretations of
the importance of an image. The smooth gradient method
ignores the intermediate layer of the neural network, but
this layer could contain a great deal of valuable information.
Therefore, Du et al. [38] proposed a guided feature inversion
method by adding class-related constraints that provide class
discrimination capabilities for a more refined interpretation.

The perturbation method adds a certain amount of noise to
the original input and measures the importance of each feature
therein by observing the corresponding changes in the hidden
layer [15]. For example, by introducing noise into the image
for super pixel occlusion, Ribeiro et al. [16] proposed the local
interpretable model-agnostic explanations method to obtain
the contribution of each pixel to the prediction. Guan et al.
[39] defined a method based on information measurement; by
introducing noise, the information lost in the intermediate layer
was obtained to quantitatively measure the importance of each
word in natural language processing.

III. DEVELOPMENT OF THE PROPOSED MODEL

In this section, we first formulate the trajectory prediction
problem and describe the input and objective. The proposed
model and loss function is presented in Section III.B. Then,
a schematic diagram of the model structure is given. In the
last part of this section, we propose the interpretation module
for TP2Net and present the interpretation process.

A. Problem Formulation

In this study, the input was the historical trajectory
data aT of the target vehicle within time thst (thst =
−wh, . . . ,−2,−1, 0). The origin of the coordinate system was
defined as the current position of the target vehicle, the x-axis
was its longitudinal direction (parallel to the lane) and the
y-axis was its lateral direction (perpendicular to the lane).

In addition, considering the perceptual range of the target
vehicle and appropriately simplifying the input, VOI incep-
tion was adopted [40] to consider the preceding vehicle,
left preceding vehicle, right preceding vehicle, left alongside
vehicle, right alongside vehicle, left following vehicle, right
following vehicle, and following vehicle as A = {ac} , c =
1, 2, . . . , N , where N = 8. The left/right alongside vehi-
cle refers to the closest vehicle driving along the left/right
side of the target vehicle, and its longitudinal position is
within a certain distance in front and rear of the target
vehicle, which may directly affect the lateral driving maneu-
ver of the target vehicle. For each vehicle’s historical tra-
jectory, a = [a−wh , a−wh+1, . . . , a−1, a0], where athst =
(xthst , ythst , vthst

x , vthst
y , athst

x , athst
y , class). Additional parameters

not considered in previous studies were provided, including
speeds vx and vy , accelerations ax and ay , and vehicle class,
as they could reflect driving intentions and thus help to extract
hidden driving features. The vehicle class was also taken
into account because there are significant differences in the
kinematic characteristics and driving features according to
vehicle type. If there is no vehicle at a given position c,
ac = 0. Additionally, it should be noted that the xc and yc

of each surrounding vehicle was aligned with the origin of
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Fig. 1. Schematic diagram of the proposed TP2Net structure.

the defined coordinate system. In order to recognize driving
maneuvers, the current driving maneuver classes Mlon and Mlat

were defined respectively representing longitudinal (normal
driving (ND), hard braking (HB), and rapid acceleration (RA))
and lateral (lane following (LF), left lane change (LLC), and
right lane change (RLC)) maneuvers. These driving maneuvers
were extracted using Deo’s [28] method.

The objective of this study was to predict the trajectory of
the target vehicle T in the future time tfut (tfut = 1, 2, . . . ,w f ).
The predicted trajectory was defined as atfut = (xtfut , ytfut),
where xtfut and ytfut are also aligned with the origin of
the defined coordinate system. In addition, the hidden fea-
tures extracted by the TPA intermediate hidden layers were
explored. More specifically, the importance of each time
step before a specific driving maneuver was quantitatively
calculated.

B. Proposed Model

As shown in Fig. 1, the proposed model is composed of
four parts: the Encoder, Decoder, TPA, and VOI inception,
which are respectively used to process input coding, output
decoding, the target vehicle information, and surrounding
vehicle information. Each part is described in detail as follows:

1) Encoder: The function of the encoder is mainly to model
the vehicle trajectory, including different historical trajectory
patterns and driving maneuver patterns. Both the target vehicle
and VOI are encoded. The encoder pertaining to the VOI
shares parameters, but not the encoder pertaining to target
vehicle. For each input ac ∈ A and aT , an embedding
vector ec is first formed through a fully connected (FC) layer.
Subsequently, the embedding vector ec is fed to the LSTM,

and the hidden state vector ht of the last unit is taken as
the hidden driving feature. The encoding tensor is obtained
after a linear transformation and leaky rectified linear unit
(LeakyReLU) activation. The above operation is as follows:

ec = φ (ac;Wemb) (1)

ht
c = φ

(
LSTM

(
ec, ht−1

c ;Wenc

)
;W lin

)
(2)

where t is the number of hidden cells in the LSTM, Wemb

is the embedding weight, Wenc is the weight of the LSTM
encoder, and W lin is the linear layer weight. These encoding
tensors will be used in subsequent parts.

2) TPA: A typical attention mechanism is more inclined
to select time steps that are more relevant to time series
prediction. This is particularly suitable for tasks in which each
time step contains a piece of information. However, for MTS
prediction tasks, this approach may introduce extra noise [9].
As the TPA is a weighted summation of line vectors containing
information across multiple time steps, it can better capture
temporal information and span multiple time steps, making it
possible to extract the temporal patterns of driving intentions
and maneuvers, improving prediction accuracy. Therefore,
this study optimized the attention mechanism for the task of
trajectory prediction, as shown in Fig. 1.

Similarly, after embedding the history trajectory of the target
vehicle aT, input eT into one layer of the LSTM to obtain
Hop = [op1, op2,…, opt ] and ht as follows

Hop, ht
T = LSTM(eT , ht−1

T ,W TPA) (3)

When one layer of the LSTM is used, opt = ht . As the last
hidden unit of LSTM, ht is not only used as the hidden state
feature of the target vehicle, but also as the Query in the
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attention, i.e. query sequence, to determine which time steps
exert greater influence under the current hidden state.

Because a convolutional neural network can extract many
different patterns from feature vectors, different temporal
patterns may be captured when extracting features among
different time steps. Therefore, m convolution filters Cm ∈
R

1×t are used to perform one-dimensional convolution in the
direction of the hidden layer time step. For simplicity, let
k = thst . The above operation is as follows:

Hi, j = Hop(:, j)⊗ C i (4)

where i = 1, 2, . . . ,m, j = 1, 2, . . . , k, and ⊗ is the
convolution operation.

The obtained convolution vector is used as the Key in the
TPA mechanism. The aforementioned ht is then used as a
query sequence to map the importance of each hidden feature
at a specific time step. With the aid of the weight matrix
Wsf , the score function ψ : Rm×k × R

t �→ R
k with Sigmoid

activation is calculated according to the weight sum of each
row:

α = ψ
(

HT W sf ht

)
(5)

where W sf ∈ R
m×t and α = (α1, α2, . . . , αk). It should be

noted that, unlike other attention methods, Softmax activation
is not used here because more than one variable may be helpful
for capturing hidden driving features.

Then, the attention mapping is broadcast on Value, and the
more important features in the hidden variables vt are weighted
as follows:

vt =
k∑

j=1

α j H :, j (6)

Finally, the obtained attention weight vt and the hidden
vector ht are combined through Wh and Wv, and the final
hidden variable h′t with the weight of the hidden temporal
pattern is obtained:

h′t = Wh ht +W vvt (7)

where W h ∈ R
t×t , Wv ∈ R

t×m , and h′t ∈ R
t . Both ht and

vt are multiplied by the weight matrix by broadcasting. The
result is the sum of the hidden vector of the target vehicle
after encoding and the attention weight across multiple time
steps. With the increase in weight across multiple time steps,
hidden driving features can be more easily discovered, thus
improving the accuracy of long-term horizon prediction.

3) VOI Inception: When the encoder encodes the motion of
the surrounding vehicles, it is difficult to capture the spatial
and position features of the driving context. However, the
dependence of the target vehicle on the surrounding vehicles
varies [28]. If the encoded tensor of the surrounding vehicles
is directly used as the input of the decoder, the spatial infor-
mation will be lost. Therefore, the VOI inception is proposed.
In order to maintain the spatial information of all vehicles, the
encoded tensors of the target vehicle and surrounding vehicles
are stacked according to their spatial positions. In particular,
it not necessary to consider the problems caused by the differ-
ent positions of surrounding vehicles, because their locations

in the target vehicle coordinate system are provided in the
input A = {ac}. For the target vehicle, a zero tensor is used
instead.

The stacked tensor is denoted as Estk . There are multiple
patterns of interaction between the target vehicle and surround-
ing vehicles under different scales, but the extraction ability of
a single-size convolution kernel (that is, at the single scale) is
limited. Inspired by the inception module in GoogLeNet [13],
the following VOI inception structure is proposed:

Due to the size limitation of Estk , three branches similar to
the inception v1 module are adopted. The 3 × 3 convolution
kernel is adopted by the first branch with a padding of 1. The
max pooling with size = 3 and padding = 1 is used for the
second branch, and then 1 × 1 convolution is performed. A
1 × 1 convolution is adopted directly by the third branch.
The reason for not using a larger convolution kernel or a
deeper number of convolution layers (such as inception v3,
ResNet-v2) is that it easily leads to overfitting. Finally, the
hidden interaction feature hA is obtained by connecting the
outputs of the above three branches through the max pooling
of size = 3. The above operation is as follows:

hinc = concat{φ(Estk ⊗ C3×3), φ[pooling(Estk)⊗ C1×1],
φ(Estk ⊗ C1×1)} (8)

hA = pooling(hinc) (9)

where C1×1 is the 1 × 1 convolution kernel and C3×3 is the
3× 3 convolution kernel.

4) Decoder: First, the decoder concatenates the encoded
tensor and TPA tensor of the target vehicle, as well as the
VOI inception tensor:

hdec = concat (hT , h′t , hA) (10)

Then, one branch is used to predict the distribution of driving
maneuvers. It should be noted that the one-hot encoding of
lateral and longitudinal driving maneuver is provided in the
training process, and the probability of a vehicle lateral and
longitudinal maneuver is output through the FC layer and
Softmax layer. The other branch repeats the tensor tfut times,
and then enters the corresponding input into each LSTM
unit. After the output activation layer, the output of each unit
represents the target vehicle coordinate value at a certain time
in the future. The above operations are shown as follows:

P̂ lon = Softmax (FC(hdec;W lon)) (11)

P̂ lat = Softmax (FC(hdec;W lat)) (12)

â = ϕ[LSTM (repeat(hdec);Wdec] (13)

where ϕ is the output activation.
For the vehicle trajectory prediction value, we use the mean

squared error as the loss function of the regression task as
follows:

JMSE = 1

N

N∑
n=1

tfut∑
j=1

∥∥ân, j − an, j
∥∥2

(14)

where N is the size of the mini-batch and an, j is the ground
truth of the target vehicle trajectory. The categorical cross
entropy is used to calculate the classification loss of the
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driving maneuver, as shown in the following equation (taking
a longitudinal maneuver as an example):

J lon
CE = −

1

N

N∑
n=1

class∑
j=1

P lon log( P̂ lon) (15)

Thus, the total loss of the model is as follows:
J = J lon

CE + J lat
CE + JMSE (16)

C. Interpretation Module for TP2Net

In order to ensure confidence in the results, the data
under specific driving maneuvers are taken as the dataset
Xset to be interpreted. For each input trajectory X =
(xT−wh

, . . . , xT−1, xT
0 ), X ∈ X set , X = aT ∪ A, and xi ∈ R

k ,
where k is the dimension of inputs. Suppose that TP2Net
contains L neural network layers, and the corresponding
hidden state is S = �(X). The goal is to quantify the amount
of information at each time step x of the input trajectory
contained in the hidden state s to explain which time steps
are more important for trajectory prediction.

The entropy is used to quantify the information contained in
the hidden state. Given trajectory X, suppose the probability
density function of the input feature x at each input time step
is p(x), then the entropy of the trajectory X is:

H(X) = −
∫

x∈X
p(x) log p(x)d x (17)

Trajectory X is input into TP2Net �(·), then all hidden
states are obtained after forward passing through L layers,
and the probability density function is p(s); thus, the entropy
of the hidden state S is:

H(S) = −
∫

s∈S
p(s) log p(s)ds (18)

Let the joint entropy of trajectory X and hidden state S be
H(X, S):

H(X, S) = −
∫

x∈X

∫
s∈S

p(x, s) log p(x, s)dsd x (19)

Then, the amount of information I(X, S) contained
between the trajectory X and the hidden state S is:

I(X, S) = H(X)− (H(X, S)−H(S)) (20)

where the first item is the total amount of information
describing trajectory X and the second item is the amount
of information discarded by the neural network after training.
The mutually contained information between X and S will
not exceed the total amount of information, indicating that
no additional information will be generated. If X and S are
completely independent, that is

H(X, S) = H(S)+H(X), (21)

then I(X, S) = 0; in other words, there is no mutual informa-
tion between trajectory X and hidden variable S, and all the
information of trajectory X is lost. Given the input trajectory
X, the entropy H(X) is constant during model training. Then,

Algorithm 1 Interpretation Module for TP2Net

1: Initialization: �(·;W�), X set, λ, epochs, σ I ← Ø
2: σ 2

S ← var(�(Xset;W�))

3: for idx←0 to |Xset|
4: Initialization: Interpreter(·;Wσ )

5: for ep←0 to epochs
6: σ ← Sigmoid(Wσ )

7: s← �(X idx;W�)

8: X̃ idx ← X idx + δδi∼N (0,�i=σ 2
i I)

9: s̃← �(X̃ idx;W�)

10: Update loss based on Equation (29)
11: Train the Interpreter(·;Wσ ) (loss backpropagation)
12: end for
13: σ ← Sigmoid(Wσ )

14: σ I ← σ I ∪ σ

15: end for
Output: σ I

the relative information I ′(X, S) contained between trajectory
X and hidden state S is as follows:

I ′(X, S) = H(S)−H(X, S)

= (−
∫

s∈S
(

∫
x∈X

p(x, s)d x) log p(s)ds)

−(−
∫

x∈X

∫
s∈S

p(x, s) log p(x, s)dsd x)

=
∫

s∈S

∫
x∈X

p(s)
p(x, s)

p(s)
log

p(x, s)
p(s)

d xds

=
∫

s∈S
p(s)H(X|s)ds

= −H(X|S) (22)

For the output s of one hidden layer, the relative information
of trajectory X can be obtained as:

H(X|s) = −
∫

xi∈X
p(xi |s) log p(xi |s)d xi (23)

From the above equation, it can be seen that the calcula-
tion of entropy H(X |s) requires the conditional probability
p(xi |s). However, this distribution is established by TP2Net,
and cannot be solved directly. As a result, the information
must be computed indirectly, as shown in Algorithm 1.

Let a layer in the trained neural network be s =
�(X;W1:L), where W 1:L contains all the weights between
layers 1–L. By adding random perturbation, if the output s of
a perturbation changes considerably, then that value is more
likely to have a greater impact on the model training. Gaussian
noise δi ∼ N (0,�i = σ 2

i I) is applied with a mean value of
0 and variance of σ 2

i I . This perturbation is then added to
trajectory X to obtain the input x̃i = xi + δi ∈ X̃ with noise.
According to the maximum likelihood estimation, in order to
obtain the parameter variance σ 2

i of Gaussian noise δi , the
likelihood function must be maximized as follows:

L(x̃1:n; σ 2
i ) = max

σ2
i

n∏
i=1

p(x̃i |s)δi∼N (0,�i=σ 2
i I) (24)
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The log-likelihood function is as follows:

ln L =
n∑

i=1

ln p(x̃i |s)δi∼N (0,�i=σ 2
i I) (25)

Since the noise is Gaussian noise, that is:

−
n∑

i=1

ln p(x̃i |s)δi∼N (0,�i=σ 2
i I) ∝ N (�(X̃); s, σ 2

S) (26)

Equation (26) can be substituted into Equation (25) to yield:

ln L = λ · 1

2

k∑
j=1

∥∥∥�(X̃)δi∼N (0,�i=σ 2
i I) − s

∥∥∥2

σ 2
S

+ C (27)

where σ 2
S is the variance of trajectory dataset Xset and λ is

an approximate parameter of the log-likelihood function and
Gaussian distribution.

In addition, in order to obtain the limits of noise in all
perturbation directions, prior knowledge σ 2

i shall be suf-
ficiently trained to maximize the amount of information
I ′ = −H(X̃|s). Given the trained network �(·;W�), the
conditional distribution of X̃ is approximately equal to the
distribution of noise δi ∼ N (0,� i = σ 2

i I). According
to Equation (23), the expression maximizing the amount of
information about H(X̃|s) can be obtained as:

−H(X̃|s) =
∫

x̃i∈X̃

1√
2πσ i

e
− x̃2

i
σ2

i log(
1√

2πσ i
e
− x̃2

i
σ2

i )dxi

= −(K

2
log(2π)+ K log(σ i )

+
∫

x̃i∈X̃

x̃2
i

σ 2
i

· e−
x̃2

i
σ2

i d(
xi

σ i
) · 1√

2π
log e)

= −K log(σ i )+ C (28)

After summarizing the previous two parts, in order to
approximate the entropy H(X|s), the distribution of variance
in δi ∼ N(0,� i = σ 2

i I) in hidden state s must be obtained.
Therefore, according to Equations (27) and (28), the loss
function is as follows:

Jσ i = λ
k∑

j=1

∥∥∥�(X̃)δi∼N (0,�i=σ 2
i I) − s

∥∥∥2

σ 2
S

− K
n∑

i=1

log(σ i )

(29)

According to Algorithm 1 and Equation (29), the trained
σ 2

i represents the information utilization degree (that is, the
importance of each time step) of the TP2Net intermediate layer
to the specific trajectory dataset Xset .

IV. EXPERIMENTS AND EVALUATIONS

In this section, the experimental setting is first illustrated,
including the datasets and experimental environment. Then,
the hyper-parameter, training setting and evaluation metrics
of the prediction results are provided. In addition, the results
of the proposed model on the test dataset are shown in
Section IV.C and compare with other excellent works. The
predicted results of each driving maneuver are shown and

analyzed in Section IV.D. In Section IV.E, the ablation exper-
iments are presented to demonstrate the effectiveness of each
module of the proposed model. In the last section, the output
of the model interpretation module is analyzed to explain that
TPA is effective.

A. Experimental Setting

The datasets used in this study were HighD [41] and
NGSIM I-80 [42], [43]. The HighD dataset includes driving
data of cars and trucks on the highways around Cologne, Ger-
many, collected by the RWTH Aachen University in 2017 and
2018. All data were collected using a drone at a frequency
of 25 fps. The NGSIM dataset is a public dataset that was
obtained at 10 fps in 2005. Taking the HighD dataset as
an example, 14 records were used, including 10 records for
training, 2 records for testing, and 2 record for verification.
An 8-s period was selected to describe the trajectory of each
vehicle: 3 s were used as the historical input and 5 s as the
trajectory to be predicted. In order to facilitate processing, the
sampling frequency of the dataset was reduced to 5 fps.

All experiments were performed on an Intel Core(R)
i7-7800x CPU @ 3.50 GHz (Turbo 4.00 GHz), NVIDIA
GeForce(R) GTX 1080Ti 11 GB GPU with 16 GB of RAM
running the Ubuntu 16.04 LTS edition. All the program
tasks were conducted on Python 3.7, and the deep learning
framework was based on PyTorch.

B. Training Setting and Evaluation Metrics

According to the comparison of multiple experiments, the
size of the hidden layer was selected as follows: for the LSTM
encoder/decoder, 128 hidden layers were selected and 32 con-
volution kernels were used for the TPA. After convolution, the
final output dimension of the TPA was 64. Each input tensor
with 64 dimensions in the VOI inception was therefore equal to
the output dimension of the encoder, making a total output of
128. The Adam optimizer was employed with a learning rate
of 10−4 and a mini-batch size of 128. In addition, the learning
rate schedule method was adopted to provide more refined
training. When the loss failed to decrease after the established
number of consecutive “patience” times, the learning rate was
reduced. The reduction factor was set to 0.8, and the minimum
learning rate was set to 10−6. In order to prevent the training
method from affecting the generalization ability of the model,
all subsequent results were performed on the validation set.

The accuracy, precision, recall, and F1-score were used
to evaluate the classification accuracy of various driving
maneuvers. In addition, to measure the accuracy of trajectory
prediction, the RMSE in meters was adopted to express the
error between the model prediction and ground truth, as is
common in trajectory prediction tasks, and is given by:

RMSE =
√√√√ 1

N

N∑
n=1

[
(xn − x̂n)2 + (yn − ŷn)

2
]

(30)

where xn , yn is the ground truth and x̂n, ŷn is the prediction.
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TABLE I

RMSE OF EACH MODEL IN THE 5-s PREDICTION HORIZON

Fig. 2. Prediction instances of HighD dataset. The blue box represents a car, the orange box represents a truck, and a triangle in a box represents the driving
direction of that vehicle. The light color dotted line is the ground truth, and the dark color solid line is the prediction. The vehicles in (a), (b), (e) drive from
left to right whereas those in (c), (d) drive from right to left.

C. Results and Comparison

To validate the proposed model, its results were compared
with those of many excellent studies conducted in recent years
of the following models:

• Class variational Gaussian mixture models (C-
VGMMs) [20]: Variational Gaussian mixture models
with a Markov random field were used to classify the
driving maneuver and predict trajectory.

• GAIL [31]: GAIL was extended into the optimization of
the gated recurrent unit to retain greater policy fidelity.

• Social LSTM (S-LSTM) [44]: A fully connected pooling
LSTM encoder/decoder was used to predict trajectory.

• MATF [32]: The historical trajectories of multiple agents
and the scene context were encoded into a GAN with
adversarial loss.

• Convolutional social pooling (CS-LSTM) [28]: Convolu-
tional social pooling was used to encode the surrounding
vehicles as social tensors, the LSTM encoder/decoder
was adopted, and multi-modal driving maneuvers were
considered.

• SGCN [35]: A sparse GCN that explicitly models sparse
directed interactions based on sparse directed spatial
graphs.

• Scalable Network (SCALE-Net) [34]: An edge-enhanced
graph convolution neural network was used that was
insensitive to the input data and improved prediction
efficiency.

• Multiple futures prediction (MFP) [45]: Parallel RNNs
with shared weight encoder was used to encode the
past and future interactions of the agent and predict the
trajectory.
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Fig. 3. Normalized relative influence between each time step and TPA output tensor for the LLC condition. The moments having obvious response peaks
in at least two subfigures are circled, where the red circle represents the first stage (−4.8 s, −5.8 s, possibly an intention to change lanes), the blue circle
represents the second stage (−2.2 ∼ −2.0 s, −3.0 ∼ −2.8 s, the driver began to turn the steering wheel), and the green circle represents the third stage (0 s,
−0.6 ∼ −0.4 s, vehicle crossing lane line).

TABLE II

CLASSIFICATION PERFORMANCE OF EACH DRIVING MANEUVER

• Multi-head attention social pooling (MHA) [3]: Multi-
head attention with encoder/decoder was used to extract
deep features of the target vehicle and surrounding
vehicles with dot product attention. More input features
(speed, acceleration, vehicle class) were considered.

• TP2Net: The model proposed in this study.

The RMSE values for each model are compared in Table I.
Note that as many studies did not evaluate the model using
the HighD dataset, the corresponding results are not provided.
It can be observed in Table I that the RMSE of NGSIM
was higher than that of HighD; this is likely because to the
data provided by the HighD dataset were more accurate and
contained fewer errors. In particular, incorrect labeling will
affect the encoding of the target vehicle and surrounding
vehicles, and this unreasonable coding will result in more
losses to and negative effects on network prediction. In the
short term (1–3 s), predictions according to the kinematic

TABLE III

RMSE OF EACH DRIVING MANEUVER IN THE 5-s PREDICTION HORIZON

characteristics and inertia of the target vehicle show relatively
small error; however, in the long term (4–5 s), predictions
of driving intention have a greater influence on the future
trajectory of the target vehicle, leading to a large error, so it
is necessary to recognize hidden driving features to guide the
trajectory prediction. Most importantly, the proposed model
provides the best performance in both short-term and long-
term trajectory prediction tasks. The proposed model provides
an accuracy improvement of 15% over that of MHA. This
demonstrates that the proposed model can better extract the
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Fig. 4. Schematic diagram pertains to values of each time step for LLC.

hidden driving features of a vehicle and utilize this feature to
guide the prediction of vehicle trajectory.

Figure 2 shows the prediction instances of various vehicle
driving maneuvers. Figures 2 (a), (b), (c), (d) show that the
model achieved good prediction accuracy on the validation set
for free driving, lane following, and lane changing maneuvers.
Figure 2 (e) shows a case in which the prediction error for
the lane change maneuver was large. It can be observed that
vehicle ID 738 made an LLC driving maneuver in the next
4 to 5 s, but the network failed to predict this maneuver.
This may be because at this moment, the network detected
that there was a left-front car ID 739 at a close distance that
should prevent the target vehicle from changing lanes, so it
predicted that the car would continue to drive straight. Thus,
when the lane-changing maneuver occurred in the next 4 to
5 s, the prediction accuracy of TP2Net decreased. Improving
performance in this scenario will be addressed in future
research.

D. Prediction Error of Each Driving Maneuver

Taking the HighD dataset as an example, Table II shows
the overall accuracy, precision, recall, and F1-score for each
driving maneuver classification. It can be seen that the classi-
fication results for lateral maneuvers were satisfactory overall,
but the F1-score for LLC and RLC was lower than that for LF.
It was found that the driving maneuver of the target vehicle
in the next 3–4 s was often incorrectly classified; improving
performance in this scenario will be addressed in future work.
In addition, the prediction accuracy for longitudinal driving
maneuvers was relatively low, which may be due to the
fuzzy classification hyperplane between different longitudinal
maneuvers.

Table III shows the lateral and longitudinal prediction errors
for each driving maneuver. It can be seen from the table that
lateral driving maneuvers increased both the longitudinal and

lateral prediction errors, but the proportion of longitudinal
prediction error was higher than that of the lateral prediction
error. The table also indicates that the proposed method was
not as accurate as MHA in terms of the longitudinal error
for LF and lateral maneuver errors in the short term, but
showed considerably reduced errors otherwise. This indicates
that TP2Net can better predict the trajectory in the long-term
prediction horizon according to the extracted hidden features.
Additionally, it can be seen in Table III that the prediction
error of LLC in a longitudinal maneuver was significantly
larger than that of RLC in a lateral maneuver. This error
is likely larger because there were more active lane changes
with RA or passive lane changes with HB associated with the
LLC maneuver, and the speed variance was larger than that
associated with the RLC maneuver. Similarly, the lateral error
associated with LF was smaller than that associated with either
LLC or RLC.

E. Comparison and Ablation Experiment

In order to verify the performance of each module of
the proposed TP2Net, the following comparison and ablation
experiments were conducted using the HighD dataset:

• Fewer features: only the abscissa and ordinate of the
target vehicle and surrounding vehicles were used as
input.

• Only hT : the prediction was only based on the target
vehicle encoded tensor hT .

• No hT : removed the target vehicle encoded tensor hT .
• No h′t : removed the TPA output tensor h′t .
• No hA: removed the VOI inception tensor hA.
• Simple VOI: 1 × 1 and 3 × 3 convolution kernels were

used to convolute the stacking tensor Estk to replace the
VOI inception.

• MHA: replaced the TPA mechanism with the MHA
mechanism.

• GCN: a graph convolution neural network was used to
model the interaction of surrounding vehicles.

• TP2Net: the model proposed in this study.

Table IV shows the RMSE of each comparison and abla-
tion model within the 5-s prediction horizon. The following
inferences can be obtained based on these results:

1) The prediction accuracy was considerably reduced when
only the abscissa and ordinate of the target vehicle were
used as the input for trajectory prediction. Though there
can be differences in the driving features of different
types of vehicles, lateral and longitudinal speed and
acceleration can also reflect future driving maneuvers.
Thus, it is necessary to provide additional kinematic
parameters for trajectory prediction.

2) Although the tensors removed in the No h′t and No hT

cases both extracted hidden features of the target vehicle,
the lateral error was small without hT whereas the
longitudinal error was small without h′t . This indicates
that TPA can better extract the lateral driving maneuvers,
the target vehicle encoding can make up for the large
longitudinal error, and the two tensors can complement
each other.
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TABLE IV

RMSE OF EACH COMPARISON AND ABLATION MODEL IN THE 5-SECOND PREDICTION HORIZON

Fig. 5. Normalized relative influence between each time step and TPA output tensor of RLC condition. The moments have obvious response peaks in at least
two subfigures are circled, where the red circle represents the first stage (−4.6 s, −5.4 s, possibly an intention to change lanes), the blue circle represents
the second stage (−2.6 ∼ −2.4s, the driver began to turn the steering wheel), and the green circle represents the third stage (−0.2∼0s, vehicle crossing lane
line).

3) Comparing the case of No hA, Simple VOI, and the
proposed model. The longitudinal and lateral errors
were relatively large when there was no interaction
information hA of the surrounding vehicles. The case of
Simple VOI using a simple convolution kernel to encode
the interaction of the surrounding vehicles can provide
an improvement in accuracy. However, after using VOI
inception, the interaction features of the surrounding
vehicles can be extracted on the multi-scale, obtaining
even higher accuracy.

4) The TPA mechanism outperformed the MHA in both
longitudinal and lateral prediction, indicating that TPA
can extract hidden driving features more effectively.
The GCN encoded the surrounding vehicles using graph
convolution to provide better long-term lateral prediction
performance, but its performance was inferior to that of
the proposed network in longitudinal prediction.

F. Output Explanation of TPA
In order to better demonstrate how the hidden driving

features extracted by TPA in the proposed TP2Net network
can improve prediction performance, the mutual information
between the TPA output tensor and input were quantified.
Only two representative driving maneuvers were analyzed:
LLC and RLC. Generally, each driver has a unique “driving
intention - lane changing maneuver - vehicle motion” pattern.
There is also a difference between the two lane-changing
maneuvers by one driver. Thus, this pattern may contain a lot
of noise. Although we cannot quantify the importance value
of each time step, we can clarify which is relatively important.
Therefore, we hope to extract certain quantitative results from
this pattern, which is a profile for most drivers. In order to
reduce the impact of noise and ensure that results could be
statistically significant, we analyzed 640 LLC and 640 RLC.
The time at which the vehicle crossed the lane was labeled 0 s,
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and the time step at which the input had the largest response
to the TPA output tensor during the period from 7.8 s before
crossing the lane to 2 s after crossing the lane was analyzed.
In order to fully train the interpretation module, each trajectory
was trained for 5000 epochs, and a learning rate of 10−4

was applied. After training, the relative importance of each
trajectory was obtained in different time steps. Taking 0.25 as
the upper limit of the importance statistics, only absolute
importance values less than 0.25 were counted; the closer the
value was to 0, the greater the impact it had on the output of
the TPA module. To make it easier to observe the importance
values of each time step, the statistical values were added
according to the time step, the maximum value of the sum was
subtracted from the sum and then the reciprocal was taken.
After this normalization, the relative importance values for
each time step were obtained.

Figure 3 shows the relative importance between each input
time step and the TPA output tensor in the case of the
LLC maneuver. A total of 10 s before and after the lane
change was analyzed in 1-s intervals. The following time steps
exhibited obvious response peaks in at least two subfigures
in Figure 3: 0 s, −0.6 to 0.4 s, −2.2 to −2.0 s, −3.0 to
−2.8 s, −4.8 s, and −5.8 s. These time steps can be divided
into three groups according to lane change stage, described as
follows:

1) 0 s and −0.6 to −0.4 s (Green circles in
Figures 3 (f), (g), and (h)): Obviously, the large
response values at these two time steps indicate that
the actual vehicle was crossing the lane in response to
the driver. At this time, the lateral speed reached its
maximum value and the lateral jerk, that is, the change
rate of lateral acceleration, reached its minimum value,
as shown in Figures 4 (a), (c). It can be seen that the
trends of the curves in Figures 3 (f) and (g) are the
same except for a phase difference of 0.2 s at −1.8–0 s.
This phase difference may be caused by the interval
between predicted time steps.

2) −2.2 to −2.0 s and −3.0 to −2.8 s (Blue circles in
Figures 3 (d), (e), and (f)): At these two time steps, the
driver turned the steering wheel and began to change
lanes. At −3.0 to −2.8 s, the lateral jerk of the vehicle
was typically the largest, as shown in Figure 4 (c). This
indicates that the driver was turning the steering wheel.
At −2.2 to −2.0 s, the steering wheel rotation angle
reached its maximum, and the lateral acceleration value
was close to its maximum, as shown in Figure 4 (b).

3) −4.8 s and −5.8 s (Red circles in Figures 3 (a), (b), (c),
and (d)): There was a long interval between these two
time steps relative to the time required for lane changing,
and the lateral speed, acceleration, and jerk values did
not change significantly at either time step. According
to [10], [11], the lane change intention will appear 1–4 s
before the corresponding driving maneuver. Although it
is difficult to define these two time steps showing higher
response values as the time steps when the lane changing
intention appeared, they at least considerably affected
the trajectory predicted by the model before the LLC

Fig. 6. Number and mean of high response values. The vertical axis is
the mean value of the high response values extracted from each trajectory
interpretation result through the sliding window. The horizontal axis is the
number of high response values extracted from each trajectory.

driving maneuver occurred. This shows that TPA can
extract longer hidden driving patterns.

In Figure 5, which shows the relative importance between
each input time step and the TPA output tensor in the case
of the RLC maneuver, there are three similar peak groups:
−0.2 to 0 s, −2.6 to −2.4 s, and −4.6 s and −5.4 s. The
interpretation of each group of peak values is the same as that
for the LLC maneuver. There was a certain phase difference
between the high response value of LLC and RLC that may
be due to the different purposes and hidden features of LLC
and RLC maneuvers.
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Figure 6 shows the number and average of high response
values of 320 trajectories each (selected randomly from
640 trajectories) at 0 s for the LLC and RLC maneuvers.
The closer the value is to 0, the greater the impact of the
trajectory on the prediction. The mean value was determined
by a sliding window with a length of 0.1, and was recorded
when the maximum number of high response values in the
window was achieved. The figure shows that the LLC and
RLC maneuvers are close in the number and distribution of
high response values. The distribution of high response values
indicates that there are about four key time steps within 3 s
before a lane change, which is close to the number of blue and
green circles in Figures 3 and 5. Because Gaussian noise was
used as the disturbance, after sufficient training, if the final
result is distributed uniformly on the vertical axis, the hidden
features extracted by TPA can be considered to have little
relationship with the input. It can be observed that the average
value of the high response values was around 0.05, illustrating
that the TPA can stably extract multiple high importance time
steps. In combination, Figures 3, 4, 5, and 6 demonstrate that
the TPA can effectively extract hidden driving features and use
these features to make higher-precision predictions of driving
maneuvers.

V. CONCLUSION

This study developed a vehicle trajectory prediction network
called TP2Net and model interpretation based on TPA. The
proposed perturbation-based method quantitatively measures
the changes of input and hidden layer tensors by adding
Gaussian noise, to mine the importance of certain dimensions.
A total of 10 s before and after the lane change was analyzed
in 1-s intervals to extract three important stages during the
lane changing maneuver. Among these stages, if the vehicle
crossed the lane line at about 0 s, the driver is ready to change
lanes at about −2 to −3 s. Hence, the driver’s intention to
change lanes could have been observed by the model at about
−4.5 to −6.0 s. Conclusively, the driving intention-maneuver
and vehicle motion pattern are well captured by TPA. This
finding indicates that TPA can effectively extract hidden
driving features and use them in trajectory prediction.

Results of ablation experiments also indicated that TPA can
effectively extract the lateral driving maneuvers of the target
vehicle, the target vehicle encoding can compensate for the
large longitudinal error, and thus the two methods complement
each other. In addition, more input features and interaction
between vehicles are essential. The interaction between the
target vehicle and surrounding vehicles was extracted on
a multi-scale to obtain greater accuracy. The experimental
results demonstrated that the prediction performance of the
proposed method was more than 15% greater than that of the
previously best method.

The proposed model improves the accuracy of prediction in
real scenarios and can output additional decision information
for subsequent planning and control. The computational cost
is reduced, and the inference speed is faster. The results of
the interpretation module can improve the interpretability and
the reliability of the network. However, there remain several

important limitations of this study: the proposed method can
only predict the trajectory of one vehicle at a time, which
may lead to time complexities under different traffic densities.
In addition, when an LC or RA and HB maneuver occurs in
the future 4 to 5 s, the prediction accuracy will decline to
a certain extent. Future work will focus on addressing these
limitations. More surrounding vehicles will be considered,
and the network can select vehicles of interest in end-to-end
learning.
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