
Byeongjoon Noh

powernoh@sch.ac.kr

Java Programming

Most of the slides are available on Senseable AI Lab homepage: https://sailab.space/courses/

Java Basic Grammar 1

https://sailab.space/courses/

2

1. Variables

2. Literals

3. Operations

Contents

3

• ; (semicolon)

• is used to mark the end of a statement, which can be a variable declaration, an assignment, or a

control statement

• DO NOT FORGET a semicolon at the end of each statement

• forgetting a semicolon can lead to compilation errors

• a common mistake but also an easy fix one you’re aware of it

• { } (curly braces)

• defines a block of code, for method or control structures like loops and conditionals

Note

4

• Comments

• comments are used to explain what a certain part of the code does, to make the code easier to

understand for humans

• comments are ignored by the Java compiler

• single-line comments: start with two forward slashes ‘//’

• multi-line comments: enclosed between ‘/*’ and ‘*/’

Note

// This is comments

/*
* These are a multi-line comments
* This line also comment aprt
*/

5

• The same name with FILE NAME and CLASS NAME

• the name of the public class in a file MUST MATCH the name of the file itself

• this is a fundamental rule enforced by the Java compiler

• to ensure consistency and manageability in code organization

Note

// In a file named HelloWorld.java

public class HelloWorld {
public static void main(String[] args) {

System.out.println(”Hello, World!!");
}

}

6

• Overall structure of Java project

Note

1. Variables

8

• A storage location paired with an associated symbolic name

• contains some known or unknown quantity of information referred to as value

• the value is stored in memory (RAM)

What is a variable?

9

• Declaration

• variable must be declared before they can be used

• this declaration typically specified the type of data the variable will hold

• syntax

• examples

• cannot be declared twice or more with the same variable’s name (SyntaxError)

Variable declaration and assignment

type variableName;

int byeongjoon;
float coffee;

10

• Assignment

• after declaring a variable, you can assign a value to it using the assignment operator ‘=’

• values are actually stored in memory

• syntax

• examples

• You can also declare and assig a value to a variable in a single statement:

Variable declaration and assignment

variableName = value;

byeongjoon = 3;
coffee = 1.5;

int byeongjoon = 3;
float coffee = 1.5;

11

• 프로그래밍 속 변수 (variable)의 개념

Variable declaration and assignment

12

• Determines the size of layout of the variable’s memory,

the range of values that can be stored within that memory,

and the set of operations that can be applied to the

variable

Primary data type (기본 자료형)

13

• To refer to objects, not a primitive type; such as classes, interfaces, and arrays

• They store the memory address of the object they refer to, rather than the data itself

• Classes

• ex) String, Integer, System, etc.

• to create objects and define the data type of those objects

• Interfaces

• ex) List, map, Set, etc.

• to specify a set of methods that a class must implement

• Arrays

• ex) int[], double[], String[], etc.

• To store multiple values of the same type in a single variable

Reference data types

14

• Variable declaration

• Declaration and assignment

• Value assignment

• if the variable is already declared, the value is overwritten

Examples of variable declaration and assignment

int radius;
char c1, c2, c3;
double weight;

int radius = 10;
char c1 = 'a', c2 = 'b', c3 = 'c';
double weight = 75.56;

radius = 10 * 5;
c1 = 'r';
weight = weight + 5.0;

15

• What is the value in variable result?

• Which are grammatically correct sentences?

Quiz

int radius = 3.5;
int result = radius + 5;

int a, b = 1, 2; // 1
int a = 1, b = 2; // 2
int a = 1; int b = 2; // 3
int a = 1, b; // 4

16

• Alphanumeric characters: Variable names can include letters, digits, underscores (‘_’), and dollar sign (‘$’)

• but cannot begin with a digit

• Case sensitivity: Variable names are case-sensitive

• ex) ‘variable’, ‘Variable’, and ‘VARIABLE’ are considered different identifiers

• No reserved words: You cannot use Java reserved words (keywords) as variable names

• ex) ‘int’, ‘float’, ‘class’, etc.

• Meaningful names

• not enforced by the language

• it is a best practice to use meaningful variable names to make your code more readable and

maintainable

• ex) ‘temperatureCelsius’, ‘userName’, ‘user_name’, ‘strInput’, ‘nCnt’, etc.

• ‘temperatureCelsius’ is more descriptive than ‘temp’ or ‘t’

Rules for variable names in Java

17

Java keywords

18

• Example of correct variable names

• Example of incorrect variable names

Rules for variable names in Java

int age;
double salary;
String firstName;
boolean isEmployee;
int whatsyournamemynameisbyeongjoon;
float Monster3;
char _kkk;

int 1stPlace;
float –amount;
String class;
boolean is Employee;
double %calc;

19

• Real number = integer (decimal) part + fractional (mantissa) part

• 23.1519 = 23 + 0.1519

• Floating-point (부동소수점) by IEEE 754 floating point standard

• a method to represent real numbers in computer

• data types in Java: ‘float’ and ‘double’

• why are the real numbers represented by floating-point?

• floating-point numbers cannot precisely represent all real numbers

• ➔ precision and rounding errors

• ex) 0.1 (decimal) ➔ 0.0011001100110011..... (binary)

Note: Floating-point numbers in Java

20

• Example for 11.765625 (decimal) (only float type)

• 1) representation in binary ➔ 1011.110001 (binary)

• integer part: 11 (decimal) ➔ 1011 (binary)

• fractional part: 0.765625 (decimal) ➔ 0.110001 (binary)

• 2) normalize the binary number

• 1011.110001 ➔ 1.01110001 * 2^3

• 3) determine the exponent

• the exponent is 3 ➔ 130 (=127 + 3) = 10000010

• 127 is is the bias for float type; double is 1023

• 4) encode the fraction

• 01110001 (ignoring the leading 1)

Note: How to convert the real number into floating point?

01000001001110001000000000000000
sign (1bit)

exponent (8bit)

mantissa (23bit)

21

• Example for 0.15625 (decimal)

• 1) representation in binary ➔ 0.00101 (binary)

• 2) normalize the binary number

• 0.00101 ➔ 1.01 * 2^(-3)

• 3) determine the exponent

• the exponent is -3 ➔ 124 (=127 - 3) = 01111100

• 4) encode the fraction

• 01 (ignoring the leading 1)

Note: How to convert the real number into floating point?

00111110001000000000000000000000
sign (1bit)

exponent (8bit)

mantissa (23bit)

0010000000000000000000000100
sign (1bit) exponent (11bit) mantissa (52bit)

double type

float type

22

• There two types of fields to obtain the sizes of primitive data types

• .BYTES: the size of the data type in bytes

• .SIZE: the size of data types in bits

Size of data type

System.out.println("Size of byte ==> " + Byte.BYTES+ ", " + Byte.SIZE);
System.out.println("Size of short ==> " + Short.BYTES + ", " + Short.SIZE);
System.out.println("Size of int ==> " + Integer.BYTES+ ", " + Integer.SIZE);
System.out.println("Size of long ==> " + Long.BYTES+ ", " + Long.SIZE);
System.out.println("Size of float ==> " + Float.BYTES+ ", " + Float.SIZE);
System.out.println("Size of double ==> " + Double.BYTES+ ", " + Double.SIZE);

Size of byte ==> 1, 8
Size of short ==> 2, 16
Size of int ==> 4, 32
Size of long ==> 8, 64
Size of float ==> 4, 32
Size of double ==> 8, 64

23

• A constant is a variable whose value cannot be changed once it has been assigned

• defined using the ‘final’ keyword, which can be applied to primitive data types

• the convention for naming constants is to use all uppercase letters with underscores (‘_’)

Constant

final int MAX_USERS = 100; // Constant declaration
System.out.println("Maximum users allowed: " + MAX_USERS);

final String WELCOME_MESSAGE = "Welcome to Java Programming!";
System.out.println(WELCOME_MESSAGE);

final double PI = 3.14159;
PI = 3.14; // Error

2. Literals

25

• A literal in programming refers to a fixed value that appears directly in the source code

• representing constant values assigned to variables and are not altered during the execution of the

program

• Java literals

• integers, floating-point numbers, characters, booleans, strings

What is a literal?

int age = 30;
System.out.println(age);

26

• Integer literals can be expressed in decimal, hexadecimal (base 16), octal (base 8), or binary (base 2) form

• Decimal: Any standard numeric value without a leading zero

• e.g. 123, -456

• Hexadecimal: Prefixed with ‘0x’

• e.g., 0xFF, 0x7a

• Octal: Prefixed with ‘0’

• e.g., 077, 023

• Binary: Prefixed with ‘0b’ or ‘0B’

• e.g., 0b1011, 0B10010

• (Note) Long-typed literal: Postfixed with ‘L’

Integer literals

int n = 15;
int m = 015;
int k = 0x15;
int b = 0b0101;
long g = 24L;
System.out.println(n);
System.out.println(m);
System.out.println(k);
System.out.println(b);
System.out.println(g);

15
13
21
5
24

27

• Floating-point literals represent integer part and fractional part

• standard notation: Decimal numbers with a dot (/)

• e.g., 3.14, -0.001

• scientific notation: Expressed with an ‘e’ or ‘E’ indicating the power of 10

• e.g., 1.5e2 (which is 150.0), 6.022E23

Floating-point literals

double d = 0.1234;
double e = 1234E-4;
float f = 0.1234f;
double w = .1234D;
System.out.println(d);
System.out.println(e);
System.out.println(f);
System.out.println(w);

0.1234
0.1234
0.1234
0.1234

28

• Character literals represents a single character

• enclosed in single quotes (‘’)

• (Note) double quotes (“”): String

• Regular characters

• e.g., ‘a’, ‘Z’, ‘글’

• Escape sequences: Special characters represented with a backslash (‘\’)

• \n (newline)

• \t (tab)

• \’ (single quote)

• \\ (backslash)

Character literals

char p = 'W';
char h = '글';
char i = '\uae00';
System.out.println(p);
System.out.println(h);
System.out.println(i);

W
글
글

29

• String literals is sequences of characters enclosed in double quotes

• can include any characters, including escape sequences

• e.g., “Hello, World!”, “Java\nProgramming”, “나나나ㄱㅏㅁ”

• Operation for string (literals)

String literals

String str = "Hello, World!";
String nation = "Korea";
String version = "11.2";
System.out.println(str);
System.out.println(nation);
System.out.println(version);

Hello, World!
Korea
11.2

str = "Hello" + "World!" + "\t" + "123";
System.out.println(str);

HelloWorld! 123

30

• Boolean (logical) literals

• Boolean type has two literals: ‘true’ and ‘false’

• Null literal

• a special literal in Java that represents a reference that points to no object

Other literals

boolean isJavaFun = true;
boolean isFlag = false;
System.out.println(isJavaFun);
System.out.println(isFlag);

String myString = null;
System.out.println(myString);

true
false

null

31

• What are the outputs of the following code?

Quiz

// Chap02Example/StringLiteralQuiz01.java

System.out.println("She said, \"Hello! How are you?\"");
System.out.println('A' + "\'s grade is 90.");
System.out.println("The file path is C:\\Users\\User\\Documents"); System.out.println("First line.\nSecond line.");
System.out.println("Column 1\tColumn 2\tColumn 3");
System.out.println("abcdef\b\bghijkl");

32

• to print the data to the console

• a part of java.lang package, automatically imported into every Java program

• argument: any data type or object you wish to print to the console

• example

• use ‘+’ symbol to concatenate the values

• “Age is ” ➔ string literal

• age ➔ integer-typed variable

Print the value

System.out.println(argument)

int age = 30;
System.out.println(age);
System.out.println("Age is " + age);

30
Age is 30

33

• Various types of print methods

• println()

• automatically append a newline character at the end of the output, moving the cursor to the

beginning of the next line on the console

• print()

• prints its argument without appending a newline at the end

• the cursor remain the end of the output text

• printf()

• used for formatted output, allowing to specify a format string and then provide the

corresponding values

Print the value

System.out.println(argument)
System.out.print(argument)
System.out.printf(argument)

34

• 1) 다양한 데이터 타입에 대한 변수를 선언하고, 값을 할당하고, 출력하는 프로그램을 작성해보세요.

• file path and name: Chap02Example/PrintPractice01.java

• 2) 주어진 변수를 사용하여 다음의 결과가 나타나도록 System.out.println()의 내부를 작성해보세요.

• file path and name: Chap02Example/PrintPractice02.java

Examples and practices for printing values

// Chap02Example/PrintPractice02.java

int age = 30;
String name = "Hong";
System.out.println([Fill it out]);

int x = 3, y = 6;
System.out.println([Fill it out]);

My name is Hong, and I am 30 years old
The point is (3, 6)

3. Operators

36

• Java supports a wide range of operations that can be performed on various types of data

• These operations can be broadly classified into several categories:

• arithmetic, bitwise, relational, logical, assignment, and special operations

Getting started

37

• Arithmetic operations are used for performing mathematical calculations

• division operation

• the result of integer division will

always truncate any decimal part

• ex) 7/3 = 2, not 2.3333..

• if you want to obtain the real number form, one or both of the denominator and numerator must

be a floating-point type (double of float)

Arithmetic operations

int a = 7, b = 5;
System.out.println("a + b = " + (a + b));
System.out.println("a - b = " + (a - b));
System.out.println("a * b = " + (a * b));
System.out.println("a / b = " + (a / b));
System.out.println("a % b = " + (a % b));

a + b = 12
a - b = 2
a * b = 35
a / b = 1
a % b = 2

38

• Type casting is the process of converting a variable from one type to another; two types of casting

• widening casting (implicit) – 암시적 캐스팅 (자동으로 처리됨)

• occurring when data from a smaller type is automatically converted into a larger type size

• narrow casting (explicit) – 명시적 캐스팅 (개발자가 직접 명시함)

• this happens when data from a larger type is converted into a smaller type size

• this type casting must be explicitly done by the programmer, as it can lead to loos of information

Note: Type casting

39

• Example of the widening casting (implicit)

• Example of the narrow casting (explicit)

Note: Type casting

int myInt = 9;
double myDouble = myInt;
System.out.println(myInt);
System.out.println(myDouble);

double myDouble = 9.78;
int myInt = (int) myDouble;
System.out.println(myDouble);
System.out.println(myInt);

9
9.0

9.78
9

40

• Division operations with type casting

• division without casting

• division with casting

• mixed data types

Note: Type casting

int a = 5;
int b = 2;
double result = a / b;
System.out.println(result); // Outputs 2.0

int a = 5;
int b = 2;
double result = (double) a / b; // or a / (double) b
System.out.println(result); // Outputs 2.5

double a = 5.5;
int b = 2;
double result = a / b;
System.out.println(result); // Outputs 2.75

41

• Modulus operator

• a fundamental arithmetic operator in Java and many other programming languages

• returns “the remainder” of the division, instead of returning the quotient

• useful in various programming scenarios

• e.g., determining whether a number is even or odd (number % 2 is zero or one?)

• e.g., checking for multiples of 3 (number % 3 is zero or not?)

Arithmetic operations

int result1 = 10 % 3;
int result2 = 10 % 4;
double result3 = 10.5 % 3;

42

• Division and modulus combination

• this can be used to solve problems that involve dividing numbers into parts

• e.g., extracting digits from a number of converting units

Arithmetic operations

int number = 12345;

int ones = number % 10; // Extracts the 'ones' digit
int tens = (number / 10) % 10; // Extracts the 'tens' digit
int hundreds = (number / 100) % 10; // Extracts the 'hundreds' digit
int thousands = (number / 1000) % 10; // Extracts the 'thousands' digit
int tenThousands = (number / 10000); // Extracts the 'ten thousands' digit

System.out.println("Ones: " + ones);
System.out.println("Tens: " + tens);
System.out.println("Hundreds: " + hundreds);
System.out.println("Thousands: " + thousands);
System.out.println("Ten thousands: " + tenThousands);

43

• How to represent the real-world mathematical expressions in Java

• File path and name: Chap02Example/MathExpressionPractice01.java

• 3𝑎

• −1 + 4𝑎

• 5𝑎 + 5𝑏𝑐

• Τ2𝑎
3𝑏

•
4𝑐−1

4𝑎+1

• 𝑎𝑑 − 𝑏𝑐

• 𝑏 + 7 ∗ 12 − a/7

Examples and practices for math expressions in Java

44

• How can we calculate the power operation and square root operation?

• e.g., 23, 3

• power and square root operations in ‘Math’ class; standard Java library

• how to represent
−𝑏+ 𝑏2−4𝑎𝑐

2𝑎𝑐
in Java expression?

Arithmetic operations

double result1 = Math.pow(2, 3);
System.out.println("2 to the power of 3 is " + result1); // Outputs 8.0

double result2 = Math.sqrt(16);
System.out.println("The square root of 16 is " + result2); // Outputs 1.7320508075688772

45

• Assignment operations assign a value to a variable

• not the equal symbol in programming language

• There are also compound assignment operators that

combine an arithmetic operation with assignment

• add and assign (‘+=‘): add the right operand to the

left operand and assigns the result to the left

operand

Assignment operations

int g = 10;
g += 5; // g = g + 5
System.out.println("g = " + g); // 15
g *= 5;
System.out.println("g = " + g); // 75

46

• Relational (comparison) operations compare two values and return a boolean result

• ‘==’ (equal to): Checks if two values are equal

• ‘!=’ (not equal): Checks if two values are not equal

• ‘>’ (not equal): Checks if the left value is greater than the right value

• ‘<’ (not equal): Checks if the left value is less than the right value

• ‘>=’ (not equal): Checks if the left value is greater than or equal to the right value

• ‘<=’ (not equal): Checks if the left value is less than or equal to the right value

Relational operations

int c = 10, d = 20;
System.out.println("c == d = " + (c == d)); // false
System.out.println("c != d = " + (c != d)); // true
System.out.println("c > d = " + (c > d)); // false
System.out.println("c < d = " + (c < d)); // true
System.out.println("c >= d = " + (c >= d)); // false
System.out.println("c <= d = " + (c <= d)); // true

47

• It can also work for other data types; not numbers

Relational operations

char c = 'a', d = 'b';
System.out.println("c == d = " + (c == d)); // false
System.out.println("c != d = " + (c != d)); // true
System.out.println("c > d = " + (c > d)); // false
System.out.println("c < d = " + (c < d)); // true

• ‘!’ (NOT): Inverts the value of a boolean

• ‘^’ (XOR): Returns true if and only if one of the

operands is true but not both

• ‘&&’ (AND): Returns true if both operands are true

• ‘||’ (OR): Returns true if at least one of the

operands is true

48

• Logical operations operate on boolean values and return a boolean result

Logical operations

49

• Examples of logical operations

Logical operations

int a = 5, b = 10, c = 5;
boolean result;

result = (a == c) && (b > a);
System.out.println("Result of (a == c) && (b > a): " + result); // Output: true
result = (a > b) && (a == c);
System.out.println("Result of (a > b) && (a == c): " + result); // Output: false
result = (a == c) || (b < a);
System.out.println("Result of (a == c) || (b < a): " + result); // Output: true
result = (a > b) || (a != c);
System.out.println("Result of (a > b) || (a != c): " + result); // Output: false
result = !(a == b);
System.out.println("Result of !(a == b): " + result); // Output: true
result = !(a > b);
System.out.println("Result of !(a > b): " + result); // Output: true
result = (a>b)^(b<=c);
System.out.println("Result of (a>b)^(b<=c): " + result); // Output: false

50

• Combination of logical and relational operations to check if a variable falls within a specific range

• Java does not support the direct chaining of relational operation; 20 < age < 30 (not valid in Java)

• instead, need to break down the condition into two parts and then combine them using the

logical operator (‘&&’ in this case)

• examples

• 20 < age < 30

• age < 20 or age > 30

• height is equal to 150 or 200

Logical and relational operations

age > 20 && age < 30

(age < 20) || (age > 30)

(height == 150) || (height == 200)

51

• Bitwise operations directly manipulate bits of integer types

Bitwise operations

52

• Example for bitwise operations

Bitwise operations

53

Bitwise operations

• Example for bitwise operations for bit-shift

54

• Increment and decrement operators are unary operators

• increase or decrease the value of a variable by 1, respectively

• very useful in programming, especially for iterating through loops or simply modifying the value

• Two types of increment and decrement operators:

• postfix increment (decrement)

• when used, the variable is first used in the expression and then incremented (decremented)

• prefix increment (decrement)

• the variable is incremented (decremented) first and then used in the expression

Increment/decrement operations

55

• Examples

Increment/decrement operations

int a = 5;
int b = a++;
System.out.println(a + ", " + b); // 6, 5

int a = 5;
int b = ++a;
System.out.println(a + ", " + b); // 6, 6

int i = 1;
System.out.println(i++); // 1
System.out.println(++i); // 3

int j = 10;
System.out.println(j--); // 10
System.out.println(--j); // 8

56

• Examples

Increment/decrement operations

int d = 3;

a = d++;
System.out.println(a + ", " + d);
a = ++d;
System.out.println(a + ", " + d);
a = d--;
System.out.println(a + ", " + d);
a = --d;
System.out.println(a + ", " + d);

57

• What is the output of the following code?

Quiz

int x = 3;
int y = x-- + 5 + --x;

System.out.println(x);
System.out.println(y);

58

• The ternary operation, a.k.a the conditional operator, is represented by ‘? :’

• a shorthand for the ‘if-else’ statement and used to assign a value to a variable based on a condition

• condition: This is a boolean expression that evaluate to either true or false

• expression1: This expression is evaluated and returned if the condition is true

• expression2: This expression is evaluated and returned if the condition is false

• flowchart of ternary operation

Ternary operation

condition ? expression1 : expression2

59

• Example

• How can we find the maximum number among three numbers (a, b, and c) by using ternary operation

Ternary operation

int a = 30, b = 50;
System.out.println("The difference is" + ((a>b)?(a-b):(b-a)));

int a = 5, b = 10;
int max = (a > b) ? a : b;
System.out.println("Maximum value is: " + max);

String result = (a % 2 == 0) ? "even" : "odd";
System.out.println("a is " + result);

End of slide

	슬라이드 1
	슬라이드 2: Contents
	슬라이드 3: Note
	슬라이드 4: Note
	슬라이드 5: Note
	슬라이드 6: Note
	슬라이드 7: 1. Variables
	슬라이드 8: What is a variable?
	슬라이드 9: Variable declaration and assignment
	슬라이드 10: Variable declaration and assignment
	슬라이드 11: Variable declaration and assignment
	슬라이드 12: Primary data type (기본 자료형)
	슬라이드 13: Reference data types
	슬라이드 14: Examples of variable declaration and assignment
	슬라이드 15: Quiz
	슬라이드 16: Rules for variable names in Java
	슬라이드 17: Java keywords
	슬라이드 18: Rules for variable names in Java
	슬라이드 19: Note: Floating-point numbers in Java
	슬라이드 20: Note: How to convert the real number into floating point?
	슬라이드 21: Note: How to convert the real number into floating point?
	슬라이드 22: Size of data type
	슬라이드 23: Constant
	슬라이드 24: 2. Literals
	슬라이드 25: What is a literal?
	슬라이드 26: Integer literals
	슬라이드 27: Floating-point literals
	슬라이드 28: Character literals
	슬라이드 29: String literals
	슬라이드 30: Other literals
	슬라이드 31: Quiz
	슬라이드 32: Print the value
	슬라이드 33: Print the value
	슬라이드 34: Examples and practices for printing values
	슬라이드 35: 3. Operators
	슬라이드 36: Getting started
	슬라이드 37: Arithmetic operations
	슬라이드 38: Note: Type casting
	슬라이드 39: Note: Type casting
	슬라이드 40: Note: Type casting
	슬라이드 41: Arithmetic operations
	슬라이드 42: Arithmetic operations
	슬라이드 43: Examples and practices for math expressions in Java
	슬라이드 44: Arithmetic operations
	슬라이드 45: Assignment operations
	슬라이드 46: Relational operations
	슬라이드 47: Relational operations
	슬라이드 48: Logical operations
	슬라이드 49: Logical operations
	슬라이드 50: Logical and relational operations
	슬라이드 51: Bitwise operations
	슬라이드 52: Bitwise operations
	슬라이드 53: Bitwise operations
	슬라이드 54: Increment/decrement operations
	슬라이드 55: Increment/decrement operations
	슬라이드 56: Increment/decrement operations
	슬라이드 57: Quiz
	슬라이드 58: Ternary operation
	슬라이드 59: Ternary operation
	슬라이드 60: End of slide

