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1. Introduction
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• Printed “Hello, World!” in hello_world.py python program in the previous chapter

• Merely prints out a string with the welcome message:

• What is print()? and where does the print() function come from?

• a predefined function that can be used to print things out, for example to the user

• “predefined”: built into the Python environment and is understood by Python interpreter

• è the interpreter knows where to find the definition of the print() function 

which tells it what to do when it encounters the print() function

• this handles a stream (sequence) of data such as letters and numbers

• this output stream of data can be sent to an output window such as the terminal on Mac or 

Command Window on Windows PC

Hello world!

print('Hello World!') 
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• The print() function actually tries to print whatever you give it,

• when it is given a string it will print a string

• if it is given an integer such as 42 it will print 42 and

• if it is a given a floating point number such as 23.56 then it will print 23.56

Hello world!
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• Let us make our program, hello_world.py, a little more interesting

• to ask us our name and say hello to us personally

• user_name = input('Enter your name: ')

• this statement first execute another function called input()

• this function is passed a string (a.k.a an argument) to use when it prompts the user for input

• also a built-in function in Python environment

• result is stored in the variable user_name

Interactive hello world

Hello world!
Enter your name: John
Hello John

print('Hello world!') 
user_name = input('Enter your name: ') 
print('Hello ', user_name)



• ‘=’

• Assignment operator

• between the user_name variable and the input() function;

• Used to assign the value returned by the function input() to the variable user_name
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Assignment operator

user_name = input('Enter your name: ') 



2. Variables
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• Variable (변수): A named area of the computers’ memory that can be used to hold things 

• often referred to as data

• e.g., strings, numbers, Boolean (True/False), etc.

• user_name is acting as a label for an area of memory which will hold the string entered by user

• can refer an area of memory containing actual data

Definition

Two dimensional grid “memory” location; each location has 

an address associated with it

• address is unique within the memory and can be used 

to return to the data held at that location
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• this address is often referred to as memory address of the data

• è this memory address that is actually held in the variable 

user_name

• è user_name is shown as pointing to the area in memory 

containing the string ‘John’

Note: Memory, address, and variable

• if we want to get hold of the name entered by the user in 

another statement, we can do by referencing the variable 

user_name

print('Hello ', user_name)
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Variable

• Let’s modify hello_world.py 

• to ask the user for the name of their best friend and print out a welcome message to that best friend

• è Because the area of memory that previously held the string ‘John’ now holds the string ‘Denise’

Hello world!
Enter your name: John
Hello John
What is the name of your best friend: Denise
Hello Best Friend Denise

print('Hello, world')
name = input('Enter your name: ')
print('Hello', name)
name = input('What is the name of your best friend: ')
print('Hello Best Friend', name)
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Variable declaration

• Variable in Python is not restricted to holding a string; ‘John’ and ‘Denise’

• can also hold other types of data such as numbers or the values (True/False)

• Note: Python has no command for declaring a variable

John
42
True

my_variable = 'John'
print(my_variable)
my_variable = 42
print(my_variable)
my_variable = True
print(my_variable)
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Variable declaration

• Provide the various variable declaration methods in Python

Orange Banana Cherry 
Orange Orange Orange
5 3.7 Cherry

x, y, z = "Orange", "Banana", "Cherry"
print(x, y, z)

x, y, z = 5, 3.7, "Cherry"
print(x, y, z)

x = y = z = "Orange"
print(x, y, z)
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Data types

• Primary data types

• Numeric; Integer, Float, Complex

• Boolean; True or False

• String

• Collection types

• Four classes in Python that provide container; that is data types of holding collections of other objects

• List

• Tuple

• Set

• Dictionary
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Get the type

• Use type() function to obtain data type

<class 'int’>
<class 'str'>

x = 5
y = "John"
print(type(x))
print(type(y))
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Naming rules

• Rules for Python variable names should:

• only contain alpha-numeric characters and underbar; (A-Z, a-z, 0-9, and _)

• start with a letter or the underbar character

• cannot start with a number

• case-sensitive; age, Age and AGE are three different variables

• cannot use “keyword”

• if, for, return, def, …

• How to obtain all keywords list in Python;

['False', 'None', 'True', 'and', 'as', 'assert', 'async', 'await', 'break', 'class', 'continue', 
'def', 'del', 'elif', 'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 
'is', 'lambda', 'nonlocal', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield']

import keyword
print(keyword.kwlist)



• Legal variable names:

• Illegal variable names:

2myvar = "John"
my-var = "John"
my var = "John"
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Naming rules

myvar = "John"
my_var = "John"
myVar = "John"
MYVAR = "John"
myvar2 = "John"
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Note: Naming conventions

• Variable names

• e.g. user_name and my_variable ç Snake naming convention

• Both these variable names are formed of a set of characters with an underbar between ‘words’

• Highlight a very widely used naming convention in Python; that variable names will:

• be all lowercase

• be in general more descriptive than variable names (e.g. a or b)

• although there are some exceptions such as the use of variables i and j in looping constructs

• with individual words separated by underscores as necessary to improve readability



• Camel case

• Each word, except the first, starts with a capital letter:

• Pascal case

• Each word starts with a capital letter:

• Snake case

• Each word is separated by an underbar character with all lowercase

myVariableName = "John"
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Note: Naming conventions

MyVariableName = "John"

my_variable_name = "John"



• To add comments to code to help anyone reading the code to understand what the code does, what its 

intent was, any design decisions the programmer made etc.

• Comments are ignored by the Python interpreter

• they are not executable code

• Comment is indicated by the ‘#’ character in Python
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Comments in code

# This is a comment
name = input('Enter your name: ')
# This is another comment
print(name) # this is a comment to the end of the line



• P02-01 다양한 방법으로 여러가지 변수들을 선언하고 해당 변수들에 값을 할당하는 프로그램을 작성해보세요.

• requirements

• 변수의 이름은 Python variable naming rule을 따를 것

• 정수, 부동소수점, 문자열 등 다양한 변수를 다루어 볼 것

• 한 번에 여러 변수를 선언/값 할당 해볼 것

21

In class practice



3. Strings



• String: a series, or sequence, of characters in order

• character: anything you can type on the keyboard in one keystroke

• a letter ‘a’, ‘b’, ‘c’, or a number ‘1’, ‘2’, ‘3’

• a special character ‘\’, ‘[‘, ‘$’, etc.

• a space ‘ ’ (although it does not have a visible representation)

• strings are immutable;

• once a string has been created it cannot be changed
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What are Strings?

---------------------------------------------------------------------------
TypeError Traceback (most recent call last) 

Cell In[9], line 2
1 original_string = "Hello" 

----> 2 original_string[0] = "J" 
TypeError: 'str' object does not support item assignment

original_string = "Hello"
original_string[0] = "J"

vscode-notebook-cell:?execution_count=9&line=2
vscode-notebook-cell:?execution_count=9&line=1
vscode-notebook-cell:?execution_count=9&line=2


• Runtime errors

• if something goes wrong during runtime, Python prints a message that includes the name of the 

exception, the line of the program where the problem occurred, and a traceback

• NameError: trying to use a variable that doesn’t exist in the current environment

• TypeError: there are several possible causes

• trying to use a value improperly; indexing a string, list, or tuple with something other than an 

integer

• a mismatch between the items in a format string and the items passed for conversion

• passing the wrong number of arguments to a function

24

Note: Debugging



• Runtime errors

• KeyError: trying to access an element of a dictionary using a key that the dictionary does not contain

• IndexError: using to access a list, string, or tuple is greater than its length minus one

• AttributeError: Triggered when an attribute reference or assignment fails, such as trying to access a 

method or property that does not exist for an object

• ZeroDivisionError: As the name suggests, it occurs when you try to divide a number by zero

• IOError: Raised when an I/O operation (like opening a file) fails for an I/O-related reason (e.g., "file not 

found")

• ImportError: Occurs when an imported module or object cannot be found

• ModuleNotFoundError: A specific case of ImportError, raised when a module cannot be found

• etc.

25

Note: Debugging



• Single quote character ‘’

• to define the start and end of a string 

• double quotes (“”) are also valid

• cannot mix the two styles of start and end strings; single quote and double quote

• Useful if your string need to contain one of the other type of string delimiters

• single quote can be embedded in a string defined using double quotes and vice versa
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Representing strings

'Hello'
'Hello World'
'Hello Andrea2000'
'To be or not to be that is the question!’
"Double quotes are also fine"

print("It's the day")
print('She said "hello" to everyone')



• Triple quotes

• support multi-line strings;

• Empty string

• has no characters in it 

• defined as single quote followed immediately by a second single quote with no gap between them

z = """
Hello
World
"""
print(z)
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Representing strings

empty_string = ''



• In python terms this means what operations or functions are their available or built-in that you can use to 

work with strings

• concatenation, length, accessing, counting, replacing, splitting, etc.
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What can you do with strings?



• Concatenation

• merge two strings together 

• using the ‘+’ operator

• an operator is an operation or behaviour that can be applied to the types involved

• take one string and add it to another string to create a new third string

• each string is defined with single quotes and double quotes, respectively, but does not matter here
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String concatenation

Good day
Hello World

string_1 = 'Good'
string_2 = " day"
string_3 = string_1 + string_2
print(string_3)
print('Hello ' + 'World')



• To concatenate a string and some other types using ‘+’ concatenation operator

• get an error message indicating that you can only concatenate string with string not integers with 

strings

• è Converting other types into strings
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String concatenation

Hello Lloyd you are 21

msg = 'Hello Lloyd you are ' + 21
print(msg)

msg = 'Hello Lloyd you are ' + str(21)
print(msg)



• Useful to know how long a string is

• if you are putting a string into a user interface you might need to know how much of the string will 

be displayed within a field

• To find out the length of a string in Python, use len() function
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Length of a string

8

print(len(string_3))



• As a string is a fixed sequence of letters, it is possible to use square brackets [ ], and an index (or position) 

to retrieve a specific character from within a string

• should note that strings are indexed from 0 (zero based indexing)

• stating [4] indicates that we want to obtain the fifth character in the string, 

which in this case is the letter ‘o’ 
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Accessing a character

o

my_string = 'Hello World'
print(my_string[4])



• What is the output of the following code?

• a) Error

• b) e   f

• c) e

• d) o   f
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Quiz

p = 'Love for Programming'
print(p[6], p[4], p[5])



• What is the output of the following code?

• a) Error

• b) p

• c) g

• d) Blank output

msg = 'programming'
print(msg[-0])
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Quiz



• Accessing a subset of string

• to obtain a subset of the original string, often referred to as a substring

• Use the square brackets notation but using ‘:’ to indicate the start and end points of substring

• Syntax: string[start:stop:step]

• start (optional) indicates start index

• stop (optional) indicates stop+1 index

• step (optional) indicates step size or stride between each character in substring
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Accessing a character

ello
Hello
llo_World

my_string = 'Hello_World'
print(my_string[1:5]) # from index 1 to 4
print(my_string[:5]) # from start to index 4
print(my_string[2:]) # from index 2 to the end



• Accessing a subset of string
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Accessing a character

Hello_World
HloWr
ello_World
dlroW_olle
dlroW_olleH

my_string = 'Hello_World'
print(my_string[::]) # the entire string (slice operation)
print(my_string[0:10:2]) # from 0 to 9 step by 2
print(my_string[1:11]) # from 1 to 10 (step by 1, default)
print(my_string[10:0:-1]) # from 10 to 1 step by -1, reverse
print(my_string[::-1]) # reverse the entire string



• Use the ‘*’ operator with strings

• to repeat the given string a certain number of times

• this generates a new string containing the original string repeated n number of times
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Repeating strings

**********
HiHiHiHiHiHiHiHiHiHi

print('*' * 10)
print('Hi' * 10)



• To split a string up into multiple separate string based on a specific character such as a space or a comma

• it is a very common requirement to handle data

• Use split() function

• result format is a list
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Splitting strings

Source string: The Good, The Bad, and the Ugly 
Split using a space ['The', 'Good,', 'The', 'Bad,', 'and', 'the', 'Ugly’] 
Split using a comma ['The Good', ' The Bad', ' and the Ugly']

title = 'The Good, The Bad, and the Ugly'
print('Source string:', title)
print('Split using a space')
print(title.split(' '))
print('Split using a comma')
print(title.split(','))



• To find out how many times a string is repeated in another string

• Use count() function 
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Counting strings

my_string.count(' '): 4
my_string.count('a'): 1

my_string = 'Count, the number of spaces'
print("my_string.count(' '):", my_string.count(' '))
print("my_string.count('a'):", my_string.count('a'))



• One string can replace a substring in another string in Python String

• Use replace() function
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Replacing strings

Goodbye World!

welcome_message = 'Hello World!'
print(welcome_message.replace("Hello", "Goodbye"))



• To find out if one string is a substring of another string using the find() function

• this method takes a second string as a parameter and checks to see if that string is in the string 

receiving the find() function

• string.find(string_to_find)

• this prints out the value 7

• index of the first letter of the substring ‘Alun’ note strings are indexed from zero

• return -1 if the string is not present
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Finding substrings

7

-1

print('Edward Alun Rawlings'.find('Alun'))

print('Edward John Rawlings'.find('Alun'))



• To compare one string with another you can user the ‘==‘ equality and ‘!=‘ not equals operators

• return either True or False indicating whether the strings are equal or not

• Should note that strings in Python are case sensitive, so string ‘James’ does not equal the string 

‘james’ 
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Comparing strings

True
False
True

print('James' == 'James') 
print('James' == 'John')
print('James' != 'John')



• There are in fact very many different operations available for string

• including checking that a string starts or ends with another string, 

• that is it upper or lower case, 

• to replace part of a string with another string,

• convert strings to upper, lower, or title case, etc.

43

Other string operations
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Other string operations

some_string = 'Hello World'
print('Testing a String')
print('-' * 20)
print('some_string', some_string)
print("some_string.startswith('H')", 
some_string.startswith('H'))
print("some_string.startswith('h')", 
some_string.startswith('h'))
print("some_string.endswith('d')", some_string.endswith('d'))
print('some_string.istitle()', some_string.istitle())
print('some_string.isupper()', some_string.isupper())
print('some_string.islower()', some_string.islower())
print('some_string.isalpha()', some_string.isalpha())
print('String conversions')
print('-' * 20)
print('some_string.upper()', some_string.upper())
print('some_string.lower()', some_string.lower())
print('some_string.title()', some_string.title())
print('some_string.swapcase()', some_string.swapcase())
print('String leading, trailing spaces', " xyz ".strip())

Testing a String
--------------------
some_string Hello World
some_string.startswith('H') True
some_string.startswith('h') False
some_string.endswith('d') True
some_string.istitle() True
some_string.isupper() False
some_string.islower() False
some_string.isalpha() False
String conversions
--------------------
some_string.upper() HELLO WORLD
some_string.lower() hello world
some_string.title() Hello World
some_string.swapcase() hELLO wORLD
String leading, trailing spaces xyz



• Python strings are case sensitive

• in Python, the string 'l' is not the same as the string 'L’; 

• one contains the lower-case letter 'l' and one the upper-case letter 'L’

• If case sensitively does not matter to you then you should convert any strings you want to compare 

into a common case before doing any testing

• Function/method names

• be very careful with capitalization of function/method names;

• isupper(), not isUpper()

45

Hints on strings



• Function/method invocations

• be careful of always including the round brackets when you call a function or method;

• event if it takes no parameters/arguments

• There is a significant difference between isupper and isupper()
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Hints on strings

<built-in method isupper of str object at 0x000002A6DCDA0EB0>
False

some_string = 'Heelo World'
print(some_string.isupper)
print(some_string.isupper())



• Python provides a sophisticated formatting system for strings that can be useful for printing information 

out or logging information from a program

• A special string known as format string that acts as a pattern defining how the final string will be laid out

• Can have any number of placeholders that must be populated

name = "Adam"
age = 20
print("{} is {} years old".format(name, age))
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String formatting

Hello Phoebe!

Adam is 20 years old

format_string = 'Hello {}!'
print(format_string.format('Phoebe'))



• By default the value are bound to the placeholders based on the order that they are provided to the 

format() function

• however, this can be overridden b providing an index to the placeholder to tell it which value should 

be bound

• alternative approach is to use named value for the placeholder
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String formatting

Hello Carol Smith, you got 75

Paloma Faith sang Guilty in 2017

print("Hello {1} {0}, you got {2}".format('Smith', 'Carol', 75))

format_string = "{artist} sang {song} in {year}"
print(format_string.format(artist='Paloma Faith', song='Guilty', year=2017))



• To indicate alignment and width within the format string

• if you wish to indicate a width to be lf for a placeholder whatever the actual value supplied, 

use ‘:’ followed by the width to use

• ex) to specify a gap of 25 characters which can be filled with a substituted value:
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String formatting

|25 characters width      |

print('|{:25}|'.format('25 characters width'))



• To indicate alignment and width within the format string (cont’d)

• within this gap you can also indicate an alignment where:

• < indicates left alignment (default)

• > indicate right alignment

• ^ indicate centered
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String formatting

|left aligned             |
|            right aligned|
|        centered         |

print('|{:<25}|'.format('left aligned')) # The default
print('|{:>25}|'.format('right aligned'))
print('|{:^25}|'.format('centered'))



• Integer alignment {:[fill][align][width]d}

• fill is the character you want to use for filling (optional)

• align is the alignment indicator (< for left, > for right, ^ for center)

• width is the total width of the formatted string

• d specifies that the argument is an integer
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String formatting

123
123    

0000000123
123_______
...123....

number = 123
print("{:>10d}".format(number)) 
print("{:^10d}".format(number))
print("{:0>10d}".format(number))
print("{:_<10d}".format(number))
print("{:.^10d}".format(number))



• Floating point alignment {:[width].[precision]f}

• width specifies the total field width (including decimal point and digits)

• precision specifies the number of digits after the decimal point
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String formatting

Basic formatting: 123.46
Width 10, right-aligned:     123.46
Width 10, left-aligned: 123.46    
Width 10, centered:   123.46  
Width 10, zero-filled: 0000123.46

number = 123.45678
print("Basic formatting: {:.2f}".format(number))
print("Width 10, right-aligned: {:10.2f}".format(number))
print("Width 10, left-aligned: {:<10.2f}".format(number))
print("Width 10, centered: {:^10.2f}".format(number))
print("Width 10, zero-filled: {:010.2f}".format(number))



• Another formatting option

• to indicate that a number should be formatted with separators (such as comma) to indicate thousands
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String formatting

1,234,567,890
1,234,567,890.0

print('{:,}'.format(1234567890))
print('{:,}'.format(1234567890.0))



• Prefix f-string option in print() function

• similar with format() function 

• provide a concise and readable way to embed expressions inside string literals (Python 3.6 or later)

• allow with ‘f’ or ‘F’ 
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String formatting

My name is Alice and I am 30 years old.

name = "Alice"
age = 30
print(f"My name is {name} and I am {age} years old.")



• % operator in print() function

• similar with format() function

• but, % operator is an older way of formatting strings in Python

• %type

• %d, %s, %c, etc.

• C/C++ style print formatting

55

String formatting

Name: Alice, Age: 30

print("Name: %s, Age: %d" % ("Alice", 30))
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• P02-02 다음 변수들을 아래 결과 처럼 예쁘게 출력하는 프로그램을 작성하라

In class practice

a_id, a_name, a_major, a_income = 101, "Alice Smith", "Software Engineer", 75000.90
b_id, b_name, b_major, b_income = 102, "Bob Johnson", "Project Manager", 85000.50
c_id, c_name, c_major, c_income = 103, "Charlie Lee", "Data Analyst", 65000.00
d_id, d_name, d_major, d_income = 104, "David Wilson", "Intern", 32000.00

''' CODE HERE '''

ID    Name            Job Title              Salary
---- -------------- ----------------- ---------
101 Alice Smith     Software Engineer   75,000.90
102 Bob Johnson     Project Manager     85,000.50
103 Charlie Lee     Data Analyst        65,000.00
104 David Wilson    Intern              32,000.00

4 spaces 15 spaces 18 spaces 10 spaces



4. Numbers and Booleans
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• Binary numbers (or binary codes)

• the most basic form of data representation

• all data is represented as sequences of bits (0s or 1s)

• numbers, characters, and even executable instructions can be encoded in binary

• Hexadecimal numbers

• a more compact form of binary representation

• four bits are represented by a single hexadecimal digit (0-9 and A-F)

• ASCII code (The American Standard Code for Information Interchange)

• a character encoding standard used to represent text in computer 

Note: Primary ways data represented in computers
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• Bit

• the smallest unit of data in computer for a single binary value; either 0 or 1

• can represent a range of different meanings

• e.g., 1/0, on/off, true/false, or any other two-state system

• Byte

• a unit of digital information that most commonly consists of 8 bits

• can represent 256 different values (from 0 to 255 in decimal)

Note: Bit and byte
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• Binary-decimal conversion

• binary to decimal conversion

Note: Number system conversion

Decimal (BASE 10) 0 1 2 3 4 5 8 10

Binary (BASE 2) 0 1 10 11 100 101 1000 1010
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• Binary-decimal conversion

• decimal to binary conversion

• integer part: divide this number repeatedly by 2 until the quotient becomes 0

• fractional part: multiply the fractional part repeatedly by 2 until it becomes 0

• example: 47.375 (decimal) to binary conversion

Note: Number system conversion

• fractional part: 0.375

0.375 x 2 = 0.750

0.750 x 2 = 1.500

0.500 x 2 = 1.000

è 101111.011 (binary)
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• Other number systems

• Octal numbers: 0~7

• Hexadecimal number: 0~9, A~F

• How to convert

• hexadecimal to decimal number

• e.g., AB1 (hexa) è ? (decimal)

• octal to binary number

• e.g., 1071 (octal) è ? (binary)

Note: Number system conversion
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• e.g., AB1 (hexa) è ? (decimal)

• e.g., 1071 (octal) è ? (binary)

Note: Number system conversion

𝐴 ∗ 16! = 10 ∗ 256 = 2560
𝐵 ∗ 16" = 11 ∗ 16 = 176
1 ∗ 16# = 1 ∗ 1 = 1
2560 + 176 + 1 = 2737

1 à 001 !
0 à 000 !
7 à 111 !
1 à 001 !
001 000 111 001 !



• Three types used to represent numbers in Python

• integers, floating point numbers, complex numbers

• Why have different ways of representing numbers?

• human

• can easily work with the number 4 and 4.0

• don’t need completely different approaches to writing them

• computer

• comes down to efficiency in terms of both the amount of memory needed to represent a number

• integers are simpler to work with and can take up less memory than real numbers

64

Types of numbers



• All integer values, no matter how big or small are represented by the integer type in Python
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Integers

1
<class 'int’>
100000000000000000000000000000000000000000000000000000000001
<class 'int'>

x = 1
print(x)
print(type(x))
x = 100000000000000000000000000000000000000000000000000000000001
print(x)
print(type(x))



• To convert another type into an integer using the int() function

• It is useful when used with the input() function
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Converting into integers

Please enter your age:12345
<class 'str'>
12345
Please enter your age:12345
<class 'int'>
12345

total = int(1.0)
total = int(1.234)
total = int('100')

age = input('Please enter your age:')
print(type(age))
print(age)

age = int(input('Please enter your age:'))
print(type(age))
print(age)



• Real numbers are represented as floating point numbers (or floats)

• an integer part + a fractional part (the bit after the decimal point)

• computer can best work with integers (only 1s and 0s)

• need a way to represent a floating point or real number; total 64 bits

• by IEEE 754 double-precision binary floating point number format
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Floating point numbers
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• Real number = integer (decimal) part + fractional (mantissa) part

• 23.1519 = 23 + 0.1519

• Floating-point (부동소수점) by IEEE 754 floating point standard 

• a method to represent real numbers in computer

• data types in Java: ‘float’ and ‘double’

• why are the real numbers represented by floating-point?

• floating-point numbers cannot precisely represent all real numbers

• è precision and rounding errors

• ex) 0.1 (decimal) è 0.0011001100110011..... (binary)

Floating point numbers
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• Example for 11.765625 (decimal) (only float type)

• 1) representation in binary è 1011.110001 (binary)

• integer part: 11 (decimal) è 1011 (binary)

• fractional part: 0.765625 (decimal) è 0.110001 (binary)

• 2) normalize the binary number

• 1011.110001 è 1.01110001 * 2^3

• 3) determine the exponent

• the exponent is 3 è 130 (=127 + 3) = 10000010

• 127 is is the bias for float type; double is 1023

• 4) encode the fraction

• 01110001 (ignoring the leading 1)

Floating point numbers

01000001001110001000000000000000
sign (1bit)

exponent (8bit)

mantissa (23bit)
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• Example for 0.15625 (decimal)

• 1) representation in binary è 0.00101 (binary)

• 2) normalize the binary number

• 0.00101 è 1.01 * 2^(-3)

• 3) determine the exponent

• the exponent is -3 è 124 (=127 - 3) = 01111100

• 4) encode the fraction

• 01 (ignoring the leading 1)

Floating point numbers

00111110001000000000000000000000
sign (1bit)

exponent (8bit)

mantissa (23bit)

0010000000000000000000000100000000000000000000000000000000000000000000000000
sign (1bit) exponent (11bit) mantissa (52bit)

double type

float type
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• How to obtain the memory size for higher-level data type

• Python’s data types are dynamically sized (primitive size + overhead size)

• unlike Java, C, C++

Floating point numbers

Size of an integer in bytes: 28
Size of a float in bytes: 24
Size of a character in bytes: 50

import sys

int_size = sys.getsizeof(100)
float_size = sys.getsizeof(101.1239930) 
char_size = sys.getsizeof('100') 

print(f"Size of an integer in bytes: {int_size}")
print(f"Size of a float in bytes: {float_size}")
print(f"Size of a character in bytes: {char_size}")
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• Why is different the result of sys.getsizeof(101.1239930) from size of floating point number format?

• sys.getsizeof(101.1239930) = 24 bytes

• Remember IEEE 754 double-precision binary floating point number format è 8 bytes (64 bits)

• è the remaining bytes, 16 (24 – 8) bytes, for the Python object overhead and memory alignment

• object overhead: some additional information (reference count, type, other bookkeeping info.)

• memory alignment: padding to align the objects’ data in memory for faster access

Floating point numbers



• Real number, or floating point number

• Due to fractional representation, it cannot provide the “precise” value

a = 1.83 * 1.000000001
a == 1.83

a = 1.83 * 1.00000000000000001
a == 1.83
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Floating point numbers

1.83
<class 'float'>

False
True

exchange_rate = 1.83
print(exchange_rate)
print(type(exchange_rate))



• To convert another type into a float using the float() function

74

Floating point numbers

int value as a float: 1.0
<class 'float'>
string value as a float: 1.5
<class 'float'>

int_value = 1
string_value = '1.5'
float_value = float(int_value)
print('int value as a float:', float_value)
print(type(float_value))
float_value = float(string_value)
print('string value as a float:', float_value)
print(type(float_value))



• Defined by a real part and an imaginary part; a+bi

• the letter ‘j’ is used in Python to represent the imaginary part of the number
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Complex numbers

c1: 2j , c2: (-5+3j)
<class 'complex'> <class 'complex'>
0.0 2.0
-5.0 3.0

c1 = 2j
c2 = -5+3j
print('c1:', c1, ', c2:', c2)
print(type(c1), type(c2))
print(c1.real, c1.imag)
print(c2.real, c2.imag)



• What is the output of the following code?

• abs()

• make absolute number

• a) 4

• b) 5

• c) 5.0

• d) 7
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Quiz

complex_number = 4 + 3j
print(abs(complex_number))



• Python supports another type called Boolean;

• only be one of True or False (and nothing else)

• with capital T and F; not ‘true’ and ‘false’
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Boolean values

True 
False 
<class 'bool'>

all_ok = True
print(all_ok)
all_ok = False
print(all_ok)
print(type(all_ok))



• Boolean type is actually a sub type of integer (but with only the values True and False)

• easy to translate between the two, using function int() and bool()

• Can also convert strings into Booleans as long as the strings contain either True or False
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Boolean values

1
0
True
False

print(int(True))
print(int(False))
print(bool(1))
print(bool(0))



• Can also determine True or False by whether there is a value in the string
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Boolean values

OK to proceed: True
True  <class 'bool’>

OK to proceed: False
True  <class 'bool'>

OK to proceed: 
False <class 'bool'>

status = bool(input('OK to proceed: '))
print(status, type(status))

status = bool(input('OK to proceed: '))
print(status, type(status))

status = bool(input('OK to proceed: '))
print(status, type(status))



• What is the output of the following code?

• a) Error

• b) 1

• c) 2

• d) True
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Quiz

print(1+True)



• What is the output of the following code?

• a) Error

• b) 1

• c) True

• d) 0
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Quiz

print(max(min(False, False), 1, True))



End of slide


