
Byeongjoon Noh

powernoh@sch.ac.kr

Python Programming

Most of the slides are available on Senseable AI Lab homepage: https://sailab.space/courses/

Variables and Data Types

https://sailab.space/courses/

2

1. Introduction

2. Variables

3. Strings

4. Numbers and Booleans

Textbook: Chapter 1, Chapter 3, Chapter 4, Chapter 5.1~5.6

Contents

1. Introduction

4

• Printed “Hello, World!” in hello_world.py python program in the previous chapter

• Merely prints out a string with the welcome message:

• What is print()? and where does the print() function come from?

• a predefined function that can be used to print things out, for example to the user

• “predefined”: built into the Python environment and is understood by Python interpreter

• è the interpreter knows where to find the definition of the print() function

which tells it what to do when it encounters the print() function

• this handles a stream (sequence) of data such as letters and numbers

• this output stream of data can be sent to an output window such as the terminal on Mac or

Command Window on Windows PC

Hello world!

print('Hello World!')

5

• The print() function actually tries to print whatever you give it,

• when it is given a string it will print a string

• if it is given an integer such as 42 it will print 42 and

• if it is a given a floating point number such as 23.56 then it will print 23.56

Hello world!

6

• Let us make our program, hello_world.py, a little more interesting

• to ask us our name and say hello to us personally

• user_name = input('Enter your name: ')

• this statement first execute another function called input()

• this function is passed a string (a.k.a an argument) to use when it prompts the user for input

• also a built-in function in Python environment

• result is stored in the variable user_name

Interactive hello world

Hello world!
Enter your name: John
Hello John

print('Hello world!')
user_name = input('Enter your name: ')
print('Hello ', user_name)

• ‘=’

• Assignment operator

• between the user_name variable and the input() function;

• Used to assign the value returned by the function input() to the variable user_name

7

Assignment operator

user_name = input('Enter your name: ')

2. Variables

9

• Variable (변수): A named area of the computers’ memory that can be used to hold things

• often referred to as data

• e.g., strings, numbers, Boolean (True/False), etc.

• user_name is acting as a label for an area of memory which will hold the string entered by user

• can refer an area of memory containing actual data

Definition

Two dimensional grid “memory” location; each location has

an address associated with it

• address is unique within the memory and can be used

to return to the data held at that location

10

• this address is often referred to as memory address of the data

• è this memory address that is actually held in the variable

user_name

• è user_name is shown as pointing to the area in memory

containing the string ‘John’

Note: Memory, address, and variable

• if we want to get hold of the name entered by the user in

another statement, we can do by referencing the variable

user_name

print('Hello ', user_name)

11

Variable

• Let’s modify hello_world.py

• to ask the user for the name of their best friend and print out a welcome message to that best friend

• è Because the area of memory that previously held the string ‘John’ now holds the string ‘Denise’

Hello world!
Enter your name: John
Hello John
What is the name of your best friend: Denise
Hello Best Friend Denise

print('Hello, world')
name = input('Enter your name: ')
print('Hello', name)
name = input('What is the name of your best friend: ')
print('Hello Best Friend', name)

12

Variable declaration

• Variable in Python is not restricted to holding a string; ‘John’ and ‘Denise’

• can also hold other types of data such as numbers or the values (True/False)

• Note: Python has no command for declaring a variable

John
42
True

my_variable = 'John'
print(my_variable)
my_variable = 42
print(my_variable)
my_variable = True
print(my_variable)

13

Variable declaration

• Provide the various variable declaration methods in Python

Orange Banana Cherry
Orange Orange Orange
5 3.7 Cherry

x, y, z = "Orange", "Banana", "Cherry"
print(x, y, z)

x, y, z = 5, 3.7, "Cherry"
print(x, y, z)

x = y = z = "Orange"
print(x, y, z)

14

Data types

• Primary data types

• Numeric; Integer, Float, Complex

• Boolean; True or False

• String

• Collection types

• Four classes in Python that provide container; that is data types of holding collections of other objects

• List

• Tuple

• Set

• Dictionary

15

Get the type

• Use type() function to obtain data type

<class 'int’>
<class 'str'>

x = 5
y = "John"
print(type(x))
print(type(y))

16

Naming rules

• Rules for Python variable names should:

• only contain alpha-numeric characters and underbar; (A-Z, a-z, 0-9, and _)

• start with a letter or the underbar character

• cannot start with a number

• case-sensitive; age, Age and AGE are three different variables

• cannot use “keyword”

• if, for, return, def, …

• How to obtain all keywords list in Python;

['False', 'None', 'True', 'and', 'as', 'assert', 'async', 'await', 'break', 'class', 'continue',
'def', 'del', 'elif', 'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in',
'is', 'lambda', 'nonlocal', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield']

import keyword
print(keyword.kwlist)

• Legal variable names:

• Illegal variable names:

2myvar = "John"
my-var = "John"
my var = "John"

17

Naming rules

myvar = "John"
my_var = "John"
myVar = "John"
MYVAR = "John"
myvar2 = "John"

18

Note: Naming conventions

• Variable names

• e.g. user_name and my_variable ç Snake naming convention

• Both these variable names are formed of a set of characters with an underbar between ‘words’

• Highlight a very widely used naming convention in Python; that variable names will:

• be all lowercase

• be in general more descriptive than variable names (e.g. a or b)

• although there are some exceptions such as the use of variables i and j in looping constructs

• with individual words separated by underscores as necessary to improve readability

• Camel case

• Each word, except the first, starts with a capital letter:

• Pascal case

• Each word starts with a capital letter:

• Snake case

• Each word is separated by an underbar character with all lowercase

myVariableName = "John"

19

Note: Naming conventions

MyVariableName = "John"

my_variable_name = "John"

• To add comments to code to help anyone reading the code to understand what the code does, what its

intent was, any design decisions the programmer made etc.

• Comments are ignored by the Python interpreter

• they are not executable code

• Comment is indicated by the ‘#’ character in Python

20

Comments in code

This is a comment
name = input('Enter your name: ')
This is another comment
print(name) # this is a comment to the end of the line

• P02-01 다양한 방법으로 여러가지 변수들을 선언하고 해당 변수들에 값을 할당하는 프로그램을 작성해보세요.

• requirements

• 변수의 이름은 Python variable naming rule을 따를 것

• 정수, 부동소수점, 문자열 등 다양한 변수를 다루어 볼 것

• 한 번에 여러 변수를 선언/값 할당 해볼 것

21

In class practice

3. Strings

• String: a series, or sequence, of characters in order

• character: anything you can type on the keyboard in one keystroke

• a letter ‘a’, ‘b’, ‘c’, or a number ‘1’, ‘2’, ‘3’

• a special character ‘\’, ‘[‘, ‘$’, etc.

• a space ‘ ’ (although it does not have a visible representation)

• strings are immutable;

• once a string has been created it cannot be changed

23

What are Strings?

TypeError Traceback (most recent call last)

Cell In[9], line 2
1 original_string = "Hello"

----> 2 original_string[0] = "J"
TypeError: 'str' object does not support item assignment

original_string = "Hello"
original_string[0] = "J"

vscode-notebook-cell:?execution_count=9&line=2
vscode-notebook-cell:?execution_count=9&line=1
vscode-notebook-cell:?execution_count=9&line=2

• Runtime errors

• if something goes wrong during runtime, Python prints a message that includes the name of the

exception, the line of the program where the problem occurred, and a traceback

• NameError: trying to use a variable that doesn’t exist in the current environment

• TypeError: there are several possible causes

• trying to use a value improperly; indexing a string, list, or tuple with something other than an

integer

• a mismatch between the items in a format string and the items passed for conversion

• passing the wrong number of arguments to a function

24

Note: Debugging

• Runtime errors

• KeyError: trying to access an element of a dictionary using a key that the dictionary does not contain

• IndexError: using to access a list, string, or tuple is greater than its length minus one

• AttributeError: Triggered when an attribute reference or assignment fails, such as trying to access a

method or property that does not exist for an object

• ZeroDivisionError: As the name suggests, it occurs when you try to divide a number by zero

• IOError: Raised when an I/O operation (like opening a file) fails for an I/O-related reason (e.g., "file not

found")

• ImportError: Occurs when an imported module or object cannot be found

• ModuleNotFoundError: A specific case of ImportError, raised when a module cannot be found

• etc.

25

Note: Debugging

• Single quote character ‘’

• to define the start and end of a string

• double quotes (“”) are also valid

• cannot mix the two styles of start and end strings; single quote and double quote

• Useful if your string need to contain one of the other type of string delimiters

• single quote can be embedded in a string defined using double quotes and vice versa

26

Representing strings

'Hello'
'Hello World'
'Hello Andrea2000'
'To be or not to be that is the question!’
"Double quotes are also fine"

print("It's the day")
print('She said "hello" to everyone')

• Triple quotes

• support multi-line strings;

• Empty string

• has no characters in it

• defined as single quote followed immediately by a second single quote with no gap between them

z = """
Hello
World
"""
print(z)

27

Representing strings

empty_string = ''

• In python terms this means what operations or functions are their available or built-in that you can use to

work with strings

• concatenation, length, accessing, counting, replacing, splitting, etc.

28

What can you do with strings?

• Concatenation

• merge two strings together

• using the ‘+’ operator

• an operator is an operation or behaviour that can be applied to the types involved

• take one string and add it to another string to create a new third string

• each string is defined with single quotes and double quotes, respectively, but does not matter here

29

String concatenation

Good day
Hello World

string_1 = 'Good'
string_2 = " day"
string_3 = string_1 + string_2
print(string_3)
print('Hello ' + 'World')

• To concatenate a string and some other types using ‘+’ concatenation operator

• get an error message indicating that you can only concatenate string with string not integers with

strings

• è Converting other types into strings

30

String concatenation

Hello Lloyd you are 21

msg = 'Hello Lloyd you are ' + 21
print(msg)

msg = 'Hello Lloyd you are ' + str(21)
print(msg)

• Useful to know how long a string is

• if you are putting a string into a user interface you might need to know how much of the string will

be displayed within a field

• To find out the length of a string in Python, use len() function

31

Length of a string

8

print(len(string_3))

• As a string is a fixed sequence of letters, it is possible to use square brackets [], and an index (or position)

to retrieve a specific character from within a string

• should note that strings are indexed from 0 (zero based indexing)

• stating [4] indicates that we want to obtain the fifth character in the string,

which in this case is the letter ‘o’

32

Accessing a character

o

my_string = 'Hello World'
print(my_string[4])

• What is the output of the following code?

• a) Error

• b) e f

• c) e

• d) o f

33

Quiz

p = 'Love for Programming'
print(p[6], p[4], p[5])

• What is the output of the following code?

• a) Error

• b) p

• c) g

• d) Blank output

msg = 'programming'
print(msg[-0])

34

Quiz

• Accessing a subset of string

• to obtain a subset of the original string, often referred to as a substring

• Use the square brackets notation but using ‘:’ to indicate the start and end points of substring

• Syntax: string[start:stop:step]

• start (optional) indicates start index

• stop (optional) indicates stop+1 index

• step (optional) indicates step size or stride between each character in substring

35

Accessing a character

ello
Hello
llo_World

my_string = 'Hello_World'
print(my_string[1:5]) # from index 1 to 4
print(my_string[:5]) # from start to index 4
print(my_string[2:]) # from index 2 to the end

• Accessing a subset of string

36

Accessing a character

Hello_World
HloWr
ello_World
dlroW_olle
dlroW_olleH

my_string = 'Hello_World'
print(my_string[::]) # the entire string (slice operation)
print(my_string[0:10:2]) # from 0 to 9 step by 2
print(my_string[1:11]) # from 1 to 10 (step by 1, default)
print(my_string[10:0:-1]) # from 10 to 1 step by -1, reverse
print(my_string[::-1]) # reverse the entire string

• Use the ‘*’ operator with strings

• to repeat the given string a certain number of times

• this generates a new string containing the original string repeated n number of times

37

Repeating strings

HiHiHiHiHiHiHiHiHiHi

print('*' * 10)
print('Hi' * 10)

• To split a string up into multiple separate string based on a specific character such as a space or a comma

• it is a very common requirement to handle data

• Use split() function

• result format is a list

38

Splitting strings

Source string: The Good, The Bad, and the Ugly
Split using a space ['The', 'Good,', 'The', 'Bad,', 'and', 'the', 'Ugly’]
Split using a comma ['The Good', ' The Bad', ' and the Ugly']

title = 'The Good, The Bad, and the Ugly'
print('Source string:', title)
print('Split using a space')
print(title.split(' '))
print('Split using a comma')
print(title.split(','))

• To find out how many times a string is repeated in another string

• Use count() function

39

Counting strings

my_string.count(' '): 4
my_string.count('a'): 1

my_string = 'Count, the number of spaces'
print("my_string.count(' '):", my_string.count(' '))
print("my_string.count('a'):", my_string.count('a'))

• One string can replace a substring in another string in Python String

• Use replace() function

40

Replacing strings

Goodbye World!

welcome_message = 'Hello World!'
print(welcome_message.replace("Hello", "Goodbye"))

• To find out if one string is a substring of another string using the find() function

• this method takes a second string as a parameter and checks to see if that string is in the string

receiving the find() function

• string.find(string_to_find)

• this prints out the value 7

• index of the first letter of the substring ‘Alun’ note strings are indexed from zero

• return -1 if the string is not present

41

Finding substrings

7

-1

print('Edward Alun Rawlings'.find('Alun'))

print('Edward John Rawlings'.find('Alun'))

• To compare one string with another you can user the ‘==‘ equality and ‘!=‘ not equals operators

• return either True or False indicating whether the strings are equal or not

• Should note that strings in Python are case sensitive, so string ‘James’ does not equal the string

‘james’

42

Comparing strings

True
False
True

print('James' == 'James')
print('James' == 'John')
print('James' != 'John')

• There are in fact very many different operations available for string

• including checking that a string starts or ends with another string,

• that is it upper or lower case,

• to replace part of a string with another string,

• convert strings to upper, lower, or title case, etc.

43

Other string operations

44

Other string operations

some_string = 'Hello World'
print('Testing a String')
print('-' * 20)
print('some_string', some_string)
print("some_string.startswith('H')",
some_string.startswith('H'))
print("some_string.startswith('h')",
some_string.startswith('h'))
print("some_string.endswith('d')", some_string.endswith('d'))
print('some_string.istitle()', some_string.istitle())
print('some_string.isupper()', some_string.isupper())
print('some_string.islower()', some_string.islower())
print('some_string.isalpha()', some_string.isalpha())
print('String conversions')
print('-' * 20)
print('some_string.upper()', some_string.upper())
print('some_string.lower()', some_string.lower())
print('some_string.title()', some_string.title())
print('some_string.swapcase()', some_string.swapcase())
print('String leading, trailing spaces', " xyz ".strip())

Testing a String

some_string Hello World
some_string.startswith('H') True
some_string.startswith('h') False
some_string.endswith('d') True
some_string.istitle() True
some_string.isupper() False
some_string.islower() False
some_string.isalpha() False
String conversions

some_string.upper() HELLO WORLD
some_string.lower() hello world
some_string.title() Hello World
some_string.swapcase() hELLO wORLD
String leading, trailing spaces xyz

• Python strings are case sensitive

• in Python, the string 'l' is not the same as the string 'L’;

• one contains the lower-case letter 'l' and one the upper-case letter 'L’

• If case sensitively does not matter to you then you should convert any strings you want to compare

into a common case before doing any testing

• Function/method names

• be very careful with capitalization of function/method names;

• isupper(), not isUpper()

45

Hints on strings

• Function/method invocations

• be careful of always including the round brackets when you call a function or method;

• event if it takes no parameters/arguments

• There is a significant difference between isupper and isupper()

46

Hints on strings

<built-in method isupper of str object at 0x000002A6DCDA0EB0>
False

some_string = 'Heelo World'
print(some_string.isupper)
print(some_string.isupper())

• Python provides a sophisticated formatting system for strings that can be useful for printing information

out or logging information from a program

• A special string known as format string that acts as a pattern defining how the final string will be laid out

• Can have any number of placeholders that must be populated

name = "Adam"
age = 20
print("{} is {} years old".format(name, age))

47

String formatting

Hello Phoebe!

Adam is 20 years old

format_string = 'Hello {}!'
print(format_string.format('Phoebe'))

• By default the value are bound to the placeholders based on the order that they are provided to the

format() function

• however, this can be overridden b providing an index to the placeholder to tell it which value should

be bound

• alternative approach is to use named value for the placeholder

48

String formatting

Hello Carol Smith, you got 75

Paloma Faith sang Guilty in 2017

print("Hello {1} {0}, you got {2}".format('Smith', 'Carol', 75))

format_string = "{artist} sang {song} in {year}"
print(format_string.format(artist='Paloma Faith', song='Guilty', year=2017))

• To indicate alignment and width within the format string

• if you wish to indicate a width to be lf for a placeholder whatever the actual value supplied,

use ‘:’ followed by the width to use

• ex) to specify a gap of 25 characters which can be filled with a substituted value:

49

String formatting

|25 characters width |

print('|{:25}|'.format('25 characters width'))

• To indicate alignment and width within the format string (cont’d)

• within this gap you can also indicate an alignment where:

• < indicates left alignment (default)

• > indicate right alignment

• ^ indicate centered

50

String formatting

|left aligned |
| right aligned|
| centered |

print('|{:<25}|'.format('left aligned')) # The default
print('|{:>25}|'.format('right aligned'))
print('|{:^25}|'.format('centered'))

• Integer alignment {:[fill][align][width]d}

• fill is the character you want to use for filling (optional)

• align is the alignment indicator (< for left, > for right, ^ for center)

• width is the total width of the formatted string

• d specifies that the argument is an integer

51

String formatting

123
123

0000000123
123_______
...123....

number = 123
print("{:>10d}".format(number))
print("{:^10d}".format(number))
print("{:0>10d}".format(number))
print("{:_<10d}".format(number))
print("{:.^10d}".format(number))

• Floating point alignment {:[width].[precision]f}

• width specifies the total field width (including decimal point and digits)

• precision specifies the number of digits after the decimal point

52

String formatting

Basic formatting: 123.46
Width 10, right-aligned: 123.46
Width 10, left-aligned: 123.46
Width 10, centered: 123.46
Width 10, zero-filled: 0000123.46

number = 123.45678
print("Basic formatting: {:.2f}".format(number))
print("Width 10, right-aligned: {:10.2f}".format(number))
print("Width 10, left-aligned: {:<10.2f}".format(number))
print("Width 10, centered: {:^10.2f}".format(number))
print("Width 10, zero-filled: {:010.2f}".format(number))

• Another formatting option

• to indicate that a number should be formatted with separators (such as comma) to indicate thousands

53

String formatting

1,234,567,890
1,234,567,890.0

print('{:,}'.format(1234567890))
print('{:,}'.format(1234567890.0))

• Prefix f-string option in print() function

• similar with format() function

• provide a concise and readable way to embed expressions inside string literals (Python 3.6 or later)

• allow with ‘f’ or ‘F’

54

String formatting

My name is Alice and I am 30 years old.

name = "Alice"
age = 30
print(f"My name is {name} and I am {age} years old.")

• % operator in print() function

• similar with format() function

• but, % operator is an older way of formatting strings in Python

• %type

• %d, %s, %c, etc.

• C/C++ style print formatting

55

String formatting

Name: Alice, Age: 30

print("Name: %s, Age: %d" % ("Alice", 30))

56

• P02-02 다음 변수들을 아래 결과 처럼 예쁘게 출력하는 프로그램을 작성하라

In class practice

a_id, a_name, a_major, a_income = 101, "Alice Smith", "Software Engineer", 75000.90
b_id, b_name, b_major, b_income = 102, "Bob Johnson", "Project Manager", 85000.50
c_id, c_name, c_major, c_income = 103, "Charlie Lee", "Data Analyst", 65000.00
d_id, d_name, d_major, d_income = 104, "David Wilson", "Intern", 32000.00

''' CODE HERE '''

ID Name Job Title Salary
---- -------------- ----------------- ---------
101 Alice Smith Software Engineer 75,000.90
102 Bob Johnson Project Manager 85,000.50
103 Charlie Lee Data Analyst 65,000.00
104 David Wilson Intern 32,000.00

4 spaces 15 spaces 18 spaces 10 spaces

4. Numbers and Booleans

58

• Binary numbers (or binary codes)

• the most basic form of data representation

• all data is represented as sequences of bits (0s or 1s)

• numbers, characters, and even executable instructions can be encoded in binary

• Hexadecimal numbers

• a more compact form of binary representation

• four bits are represented by a single hexadecimal digit (0-9 and A-F)

• ASCII code (The American Standard Code for Information Interchange)

• a character encoding standard used to represent text in computer

Note: Primary ways data represented in computers

59

• Bit

• the smallest unit of data in computer for a single binary value; either 0 or 1

• can represent a range of different meanings

• e.g., 1/0, on/off, true/false, or any other two-state system

• Byte

• a unit of digital information that most commonly consists of 8 bits

• can represent 256 different values (from 0 to 255 in decimal)

Note: Bit and byte

60

• Binary-decimal conversion

• binary to decimal conversion

Note: Number system conversion

Decimal (BASE 10) 0 1 2 3 4 5 8 10

Binary (BASE 2) 0 1 10 11 100 101 1000 1010

61

• Binary-decimal conversion

• decimal to binary conversion

• integer part: divide this number repeatedly by 2 until the quotient becomes 0

• fractional part: multiply the fractional part repeatedly by 2 until it becomes 0

• example: 47.375 (decimal) to binary conversion

Note: Number system conversion

• fractional part: 0.375

0.375 x 2 = 0.750

0.750 x 2 = 1.500

0.500 x 2 = 1.000

è 101111.011 (binary)

62

• Other number systems

• Octal numbers: 0~7

• Hexadecimal number: 0~9, A~F

• How to convert

• hexadecimal to decimal number

• e.g., AB1 (hexa) è ? (decimal)

• octal to binary number

• e.g., 1071 (octal) è ? (binary)

Note: Number system conversion

63

• e.g., AB1 (hexa) è ? (decimal)

• e.g., 1071 (octal) è ? (binary)

Note: Number system conversion

𝐴 ∗ 16! = 10 ∗ 256 = 2560
𝐵 ∗ 16" = 11 ∗ 16 = 176
1 ∗ 16# = 1 ∗ 1 = 1
2560 + 176 + 1 = 2737

1 à 001 !
0 à 000 !
7 à 111 !
1 à 001 !
001 000 111 001 !

• Three types used to represent numbers in Python

• integers, floating point numbers, complex numbers

• Why have different ways of representing numbers?

• human

• can easily work with the number 4 and 4.0

• don’t need completely different approaches to writing them

• computer

• comes down to efficiency in terms of both the amount of memory needed to represent a number

• integers are simpler to work with and can take up less memory than real numbers

64

Types of numbers

• All integer values, no matter how big or small are represented by the integer type in Python

65

Integers

1
<class 'int’>
1001
<class 'int'>

x = 1
print(x)
print(type(x))
x = 1001
print(x)
print(type(x))

• To convert another type into an integer using the int() function

• It is useful when used with the input() function

66

Converting into integers

Please enter your age:12345
<class 'str'>
12345
Please enter your age:12345
<class 'int'>
12345

total = int(1.0)
total = int(1.234)
total = int('100')

age = input('Please enter your age:')
print(type(age))
print(age)

age = int(input('Please enter your age:'))
print(type(age))
print(age)

• Real numbers are represented as floating point numbers (or floats)

• an integer part + a fractional part (the bit after the decimal point)

• computer can best work with integers (only 1s and 0s)

• need a way to represent a floating point or real number; total 64 bits

• by IEEE 754 double-precision binary floating point number format

67

Floating point numbers

68

• Real number = integer (decimal) part + fractional (mantissa) part

• 23.1519 = 23 + 0.1519

• Floating-point (부동소수점) by IEEE 754 floating point standard

• a method to represent real numbers in computer

• data types in Java: ‘float’ and ‘double’

• why are the real numbers represented by floating-point?

• floating-point numbers cannot precisely represent all real numbers

• è precision and rounding errors

• ex) 0.1 (decimal) è 0.0011001100110011..... (binary)

Floating point numbers

69

• Example for 11.765625 (decimal) (only float type)

• 1) representation in binary è 1011.110001 (binary)

• integer part: 11 (decimal) è 1011 (binary)

• fractional part: 0.765625 (decimal) è 0.110001 (binary)

• 2) normalize the binary number

• 1011.110001 è 1.01110001 * 2^3

• 3) determine the exponent

• the exponent is 3 è 130 (=127 + 3) = 10000010

• 127 is is the bias for float type; double is 1023

• 4) encode the fraction

• 01110001 (ignoring the leading 1)

Floating point numbers

01000001001110001000000000000000
sign (1bit)

exponent (8bit)

mantissa (23bit)

70

• Example for 0.15625 (decimal)

• 1) representation in binary è 0.00101 (binary)

• 2) normalize the binary number

• 0.00101 è 1.01 * 2^(-3)

• 3) determine the exponent

• the exponent is -3 è 124 (=127 - 3) = 01111100

• 4) encode the fraction

• 01 (ignoring the leading 1)

Floating point numbers

00111110001000000000000000000000
sign (1bit)

exponent (8bit)

mantissa (23bit)

0010000000000000000000000100
sign (1bit) exponent (11bit) mantissa (52bit)

double type

float type

71

• How to obtain the memory size for higher-level data type

• Python’s data types are dynamically sized (primitive size + overhead size)

• unlike Java, C, C++

Floating point numbers

Size of an integer in bytes: 28
Size of a float in bytes: 24
Size of a character in bytes: 50

import sys

int_size = sys.getsizeof(100)
float_size = sys.getsizeof(101.1239930)
char_size = sys.getsizeof('100')

print(f"Size of an integer in bytes: {int_size}")
print(f"Size of a float in bytes: {float_size}")
print(f"Size of a character in bytes: {char_size}")

72

• Why is different the result of sys.getsizeof(101.1239930) from size of floating point number format?

• sys.getsizeof(101.1239930) = 24 bytes

• Remember IEEE 754 double-precision binary floating point number format è 8 bytes (64 bits)

• è the remaining bytes, 16 (24 – 8) bytes, for the Python object overhead and memory alignment

• object overhead: some additional information (reference count, type, other bookkeeping info.)

• memory alignment: padding to align the objects’ data in memory for faster access

Floating point numbers

• Real number, or floating point number

• Due to fractional representation, it cannot provide the “precise” value

a = 1.83 * 1.000000001
a == 1.83

a = 1.83 * 1.00000000000000001
a == 1.83

73

Floating point numbers

1.83
<class 'float'>

False
True

exchange_rate = 1.83
print(exchange_rate)
print(type(exchange_rate))

• To convert another type into a float using the float() function

74

Floating point numbers

int value as a float: 1.0
<class 'float'>
string value as a float: 1.5
<class 'float'>

int_value = 1
string_value = '1.5'
float_value = float(int_value)
print('int value as a float:', float_value)
print(type(float_value))
float_value = float(string_value)
print('string value as a float:', float_value)
print(type(float_value))

• Defined by a real part and an imaginary part; a+bi

• the letter ‘j’ is used in Python to represent the imaginary part of the number

75

Complex numbers

c1: 2j , c2: (-5+3j)
<class 'complex'> <class 'complex'>
0.0 2.0
-5.0 3.0

c1 = 2j
c2 = -5+3j
print('c1:', c1, ', c2:', c2)
print(type(c1), type(c2))
print(c1.real, c1.imag)
print(c2.real, c2.imag)

• What is the output of the following code?

• abs()

• make absolute number

• a) 4

• b) 5

• c) 5.0

• d) 7

76

Quiz

complex_number = 4 + 3j
print(abs(complex_number))

• Python supports another type called Boolean;

• only be one of True or False (and nothing else)

• with capital T and F; not ‘true’ and ‘false’

77

Boolean values

True
False
<class 'bool'>

all_ok = True
print(all_ok)
all_ok = False
print(all_ok)
print(type(all_ok))

• Boolean type is actually a sub type of integer (but with only the values True and False)

• easy to translate between the two, using function int() and bool()

• Can also convert strings into Booleans as long as the strings contain either True or False

78

Boolean values

1
0
True
False

print(int(True))
print(int(False))
print(bool(1))
print(bool(0))

• Can also determine True or False by whether there is a value in the string

79

Boolean values

OK to proceed: True
True <class 'bool’>

OK to proceed: False
True <class 'bool'>

OK to proceed:
False <class 'bool'>

status = bool(input('OK to proceed: '))
print(status, type(status))

status = bool(input('OK to proceed: '))
print(status, type(status))

status = bool(input('OK to proceed: '))
print(status, type(status))

• What is the output of the following code?

• a) Error

• b) 1

• c) 2

• d) True

80

Quiz

print(1+True)

• What is the output of the following code?

• a) Error

• b) 1

• c) True

• d) 0

81

Quiz

print(max(min(False, False), 1, True))

End of slide

