
Byeongjoon Noh

powernoh@sch.ac.kr

Python Programming

Most of the slides are available on Senseable AI Lab homepage: https://sailab.space/courses/

Flow of Control

https://sailab.space/courses/

2

1. Basic operators

2. Flow of control using “if” statements

3. Iteration and looping

4. Error and exception handling

Textbook: Chapter 5.7, 5.8, 5.9, Chapter 6, Chapter 7, Chapter 24

Contents

1. Basic operators

• Arithmetic operators

• used to perform some form of mathematical operation

• e.g., addition, subtraction, multiplication and division etc.

• in Python, they are represented by one or two characters as follows:

4

Types of arithmetic operators

• Two integers can be added together using +, - and *

• Operations such as +, - and * between integers always produce integer results

5

Integer operations

home = 10
away = 15
print(home + away)
print(type(home + away))
print(10 * 4)
print(type(10*4))
goals_for = 10
goals_against = 7
print(goals_for - goals_against)
print(type(goals_for - goals_against))

25
<class 'int'>
40
<class 'int'>
3
<class 'int'>

• Division operator (/)

• 100 / 20 è reasonably expect to produce might be 5; but actually 5.0

• Because the computer cannot the result of division operation in advance; so designate floating point

number by default

6

Integer operations

print(100 / 20)
print(type(100 / 20))

5.0
<class 'float'>

res1 = 3/2
print(res1)
print(type(res1))

1.5
<class 'float'>

• Integer division operator (//)

• ignoring the fractional part then there is an alternative version of the divide operator

• Modulus operator (%)

• returns the remainder of a division operation

7

Integer operations

res1 = 3//2
print(res1)
print(type(res1))

1
<class 'int'>

print('Modulus division 4 % 2:', 4 % 2)
print('Modulus division 3 % 2:', 3 % 2)

Modulus division 4 % 2: 0
Modulus division 3 % 2: 1

• Power operator (**)

• to raise an integer by a given power

• 5**3 means 5^3

• in fact, these two operands have also floating point numbers

8

Integer operations

a = 5
b = 3
print(a ** b)

125

a = 5
b = 0.5
print(a ** b)

2.23606797749979

• Multiple, subtract, add and divide operations available for floating point numbers

• All these operators produce new floating point numbers

9

Floating point number operations

print(2.3 + 1.5)
print(1.5 / 2.3)
print(1.5 * 2.3)
print(2.3 - 1.5)
print(1.5 - 2.3)

3.8
0.6521739130434783
3.4499999999999997
0.7999999999999998
-0.7999999999999998

• Any operation involving both integers and floating point numbers è will produce a floating point number

• if one of the sides of an operation such as add, subtract, divide or multiple is a floating point number,

then the result will be a floating point number

• Which may or may not have been what you expected; 0.3

• floating point number being presented as an approximation within a computer system

• solution) use decimal module

10

Floating point number operations

i = 3 * 0.1
print(i)

0.30000000000000004

• Ceiling and flooring operation

• to adjust the real numbers to the nearest integer up or down

• need to import ‘math’ module

• ceiling: math.ceil()

• find the smallest integer greater than or equal to the number

• flooring: math.floor()

• find the largest integer less than or equal to the number

11

Floating point number operations

import math

print(math.ceil(2.3)) # Outputs: 3
print(math.ceil(-2.3)) # Outputs: -2
print(math.floor(2.3)) # Outputs: 2
print(math.floor(-2.3)) # Outputs: -3

• To assign a value to a variable

• the available compound operators in Python

12

Assignment operators

x = 0
x += 1 # has the same behavior as x = x + 1

• A special type in Python; None

• <NoneType> with a single value

• to represent null values or nothingness

• Different with False, or empty string or 0

• can be used when you need to create a variable, but don’t have an initial value for it

• Test for the presence of None using ‘is’ and ‘is not’

13

None value

winner = None
print(type(winner))

print(winner is None)
print(winner is not None)

True
False

<class 'NoneType'>

• What is the output of the following code?

• a) True

• b) False

• c) Error

• d) None

14

Quiz

str1 = "abc"
str2 = str1
str1 += "d"
print(str1 == str2)

• What is the output of the following code?

• a) 1

• b) 0

• c) -1

• d) Error

15

Quiz

print(3%-2)

• What is the output of the following code?

• a) 48

• b) 24

• c) 64

• d) 18

16

Quiz

print(3*2**3)

• Used to perform operations on binary numbers at the bit level

• These operators treat their operands as sequences of 64 bits, and operate on them bit by bit

17

Note: Bitwise operators

• << operator (left shift operator)

• Shifts the bits to the left by a specified number of places (fills in with 0s on the right)

• effectively multiplies by 2^(n) with n times shift to the left

• >> operator

• Shifts the bits to the right by a specified number of places (fills in with the sign bit on the left in case

of signed numbers)

• effectively multiplies by 2^(-n) with n times shift to the right

18

Note: Bitwise operators

• Example of bitwise operators

19

Note: Bitwise operators

a = 50 # 110010
b = 25 # 011001
print(a & b)
print(a | b)
print(a ^ b)
print(~a)
print(~a+1) # convert to 2’s complement
print(a << 2)
print(a >> 2)

16
59
43
-51
-50
200
12

• P03-01 사용자로부터 kilometer의 값을 입력받아서 mile로 변환하는 프로그램을 작성해보세요.

• requirements

• input() function을 사용하여 사용자로부터 값을 입력받을 것

• mile = 0.6214 * kilometers

• input: kilometer value

• output: mile value

20

In class practice

Enter the kilometer: 1758
1758 kilometer is 1092.4212 miles

2. Flow of control using “if” statements

• “Flow control” determine how a program will respond to different condition and decide which path of

execution to follow

• refers to the order in which individual statements, instructions, or function calls

• a fundamental concept in programming that directs the order of operations based on logical rules

and conditions

22

Flow control

• There are mainly three statements to control flow

• Conditional statements

• Transfer statements

• Iterative statements

23

Flow control

• These are operators that return Boolean values; True or False

• key to the conditional elements of flow of control statements such as “if”

• used in everyday life all the time

• do I have enough money to buy lunch, or is this shoe in my size, etc.

24

Comparison operators

25

Comparison operators

a, b = 100, 200
print(a == b)
print(a != b)
print(a > b)
print(a <= b)

False
True
False
True

name1 = "John is nice."
name2 = "john is nice."
print(name1 == name2)
name2 = "John is nice."
print(name1 == name2)

False
True

• Used to combined Boolean expressions together

• typically, they are used with comparison operators to create more complex conditions

• ex) how to express ‘100 < a < 200’

• ex) how to express ‘a < b < c’

26

Logical operators

(a > 100) and (a < 200)
a > 100 and a < 200

(a < b) and (b < c)

27

Comparison and logical operators

a = 99
print((a > 100) and (a < 200))
print((a > 100) or (a < 200))
print(not(a == 100))
print(not(a != 100))

False
True
True
False

• What is the output of the following code?

• a) a is b: True

a == b: False

• b) a is b: False

a == b: True

• c) a is b: True

a == b: True

• d) Error

28

Quiz

a = 'Hello'
b = 'Hello'
print(f"a is b: {a is b}")
print(f"a == b: {a == b}")

• A form of conditional programming;

• something you probably do every day in the real world

• Syntax (most basic form)

• if the condition is True then we will execute the indented statement

• * Indentation to separate a block for if statement

if <condition-evaluating-to-boolean>:
statement

29

The if statement

• Importance of Indentation

• Python uses indentation to define blocks

• unlike many other programming languages uses braces ‘{ }’ to define a block of code

• All the code within an if statement, loop, function definition, or any other block must be consistently

indented to be considered part of the same block

• General indentation in Python

• 4 spaces or 1 tab

• depending on Python-supported IDE

30

Note: Indentation in Python

• if less than zero a message noting this will be printed to the user

• to execute multiple statements when our condition is true

• we can indent several lines

31

Working with an “if” statement

num = int(input('Enter a number: '))
if num < 0:

print(num, 'is negative')

Enter a number: -10
-10 is negative

num = int(input('Enter another number: '))
if num > 0:

print(num, 'is positive’)
print(num, 'squared is ', num * num)

print('Bye')

Enter another number: 15
15 is positive
15 squared is 225
Bye

• An optional element that can be run if the conditional part of the if statement returns False

• Guaranteed that at least one (and at most one) of the print() function will execute

32

“else” in an “if” statement

num = int(input('Enter yet another number: '))
if num < 0:

print('Its negative')
else:

print('Its not negative')

Enter yet another number: 20
Its not negative

• else-if scenario

• In some cases there may be several conditions you want to test, with each condition being tested in

the previous one failed

• by the elif element of an if statement

• è follows the if part and comes before any (optional) else part

• syntax

33

The use of “elif”

elif <condition-evaluating-to-boolean>:
statement

• the first if condition failed (as savings is not equal to 0),

• the next elif also must have returned False as savings were greater than 500,

• it was second elif statement that returned True and thus the associated print()

34

The use of “elif”

savings = float(input("Enter how much you have in savings: "))
if savings == 0:

print("Sorry no savings")
elif savings < 500:

print('Well done')
elif savings < 1000:

print('Thats a tidy sum')
elif savings < 10000:

print('Welcome Sir!')
else:

print('Thank you')

Enter how much you have in savings: 500
Thats a tidy sum

• It is possible to nest one if statement inside another

• nesting: indicates that one if statement is located within part of the another if statement and can

be used to refine the conditional behaviour of the program

35

Nested if statement

snowing = True
temp = -1
if temp < 0:

print('It is freezing')
if snowing:

print('Put on boots')
print('Time for Hot Chocolate')

print('Bye')

It is freezing
Put on boots
Time for Hot Chocolate
Bye

• Quite common to want to assign a specific value to a variable dependent on some conditions

• Syntax

• example

36

Short hand form of if statement

age = 15
status = None
if (age > 12) and age < 20:

status = 'teenager'
else:

status = 'not teenager'
print(status)

<result1> if <condition-is-met> else <result2>

age = 15
status = 'teenager' if age > 12 and age < 20 else 'not teenager'
print(status)

• What is the output of the following code?

• a) 15

• b) 10

• c) False

• d) Error

37

Quiz

x, y = 15, 10
result = x if x < y else y
print(result)

• P03-02 사용자로부터 정수 1개를 입력받고, 해당 수가 양수 인지 음수인지 0인지 판단하는 프로그램을 작성해보세요.

• input: 1개의 정수

• output: 양수, 음수 또는 0

38

In class practice

• P03-03 사용자로부터 정수 1개를 입력받고 해당 수가 짝수인지 음수인지 판단하여 출력하는 프로그램을 작성해보세요.

• input: 1개의 정수

• output: 짝수 또는 홀수

• hint

39

In class practice

(num % 2) == 0

• P03-04 사용자로부터 점수를 입력받고 해당 점수가 pass인지 fail인지 판단하여 출력하는 프로그램을 작성해보세요.

• requirements

• if score is greater than 60, print out ‘pass’ message

• USE short hand form of if statement

• input: 점수

• output: ‘pass’ or ‘fail’

40

In class practice

<result1> if <condition-is-met> else <result2>

• P03-05 사용자로부터 점수를 입력받고, 학점을 A, B, C, D and F로 구분하여 출력하는 프로그램을 작성해보세요.

• input: a number (grade)

• output: a letter (grade category)

• requirements

• 90 <= A <= 100

• 80 <= B < 90

• 70 <= C < 80

• 60 <= D < 70

• F < 60

41

In class practice

3. Iteration and looping

• To control the repeated execution of selected statements

• while loop and for loop available in Python

43

Introduction

• The while loop exists in almost all programming languages and is used to iterative (or repeat) one or more

code statements as long as the test condition (expression) is True

44

While loop

• General syntax

• test condition/expression is True then the statement or block of statements will be executed

• Test is performed before each iteration;

• if the condition fails the first time around the loop the statement or block of statement may never be

executed at all

45

While loop

while <test-condition-is-true>:
statement or statements

count = 0
print('Starting')
while count < 10:

print(count, ' ', end='')
count += 1

print() # not part of the while loop
print('Done')

Starting
0 1 2 3 4 5 6 7 8 9
Done

• What is the output of the following code?

• a) 1 2

• b) 1 2 3

• c) 1

• d) None

46

Quiz

j = 1
while j <= 2:

print(j, end = ' ')
j +=1

• print() function ends with a newline character (\n), which means that after the text in printed, the

cursor will move to the next line

• The end='' argument (option) specify; not to end with a newline, but with an empty string instead

47

Note: end='' in print() function

print(count, ' ', end='')

• A far more concise way to make loop

• typically clearer to another programmer that the loop must iterate for a specific number of iterations

• General syntax

48

For loop

for <variable-name> in range(...):
statement or statements

• range(start, end, step)

• range(0, 10); ‘i’ would take values 0, 1, 2, … up to 9

• range(0, 10, 2); take 0 to 9 step by 2

49

For loop

print('Print out values in a range')
for i in range(0, 10):

print(i, ' ', end='')
print()
print('Done')

Print out values in a range
0 1 2 3 4 5 6 7 8 9
Done

for i in range(0, 10, 2):
print(i, ' ', end='')

0 2 4 6 8

• range(start, end, step)

• start is also optional

50

For loop

for i in range(4):
print(i, ' ', end='')

0 1 2 3

• One interesting variation on for loop is the use of a wild card (‘_’) instead of a lopping variable;

• this can be useful if you are only interested in looping a certain number of tiems and not in the value

of the loop counter itself

• in this case we are not interested in the values generated by the range; only in looping 10 times thus

there is no benefit in recording the loop variable

51

For loop

Now use an 'anonymous' loop variable
for _ in range(0, 10):

print('.', end='')
print()

• What is the output of the following code?

• a) 0.100.350.60.85

• b) 0.10.350.60.851.1

• c) 0.10 0.35 0.6 0.85

• d) 0.1 0.35 0.6 0.85 1.1

52

Quiz

for i in range(4):
print(0.1 + i * 0.25, end='')

• What is the output of the following code?

• a) 19 16 13 10

• b) 10 13 16 19

• c) 11 14 17 20

• d) 20 17 14 11

53

Quiz

for i in range(20, 10, -3):
print(i, end=' ')

• P03-06-A: Asterisks (*)을 사용하여 사용자로부터 입력받은 크기의 정사각형을 출력하는 프로그램을 작성해보세요.

• input: N (사용자로부터 입력받은 정사각형의 한 변의 길이)

• output: *로 구성된 N*N 크기의 정사각형

• P03-06-B Asterisks (*)을 사용하여 사용자로부터 입력받은 크기의 직사각형을 출력하는 프로그램을 작성해보세요.

• input: N (직사각형의 밑변 길이), M (직사각형의 높이 길이) ç 사용자로부터 입력

• output: *로 구성된 N*M 크기의 직사각형

54

In class practice

* * * * *
* * * * *
* * * * *
* * * * *
* * * * *

* * * * * *
* * * * * *
* * * * * *
* * * * * *

• Python allows programmers to decide whether they want to break out of a loop early or not

• whether a for loop or a while loop

• use break statement

55

Break loop statement

• Typically, if statement is placed on the break so that the break statement is conditionally applied when

appropriate

• if the entered value is 7, then all the values in the loop should be printed;

• else if the value is 3, then only the value 0, 1 2 and 2 will be printed out before loop breaks early

56

Break loop statement

print('Only print code if all iterations completed')
num = int(input('Enter a number to check for: '))
for i in range(0, 6):

if i == num:
break

print(i, ' ', end='')
print('Done')

Only print code if all iterations completed
Enter a number to check for: 7
0 1 2 3 4 5 Done

Only print code if all iterations completed
Enter a number to check for: 3
0 1 2 Done

• The continue statement also affects the flow of control within the lopping constructs for and while

• but it does not terminate the whole loop; rather it only terminates the current iteration loop

57

Continue loop statement

58

Continue loop statement

for i in range(0, 10):
print(i, ' ', end='')

if i % 2 == 1:
continue

print('hey its an even number')
print('we love even numbers')

print('Done')

0 hey its an even number
we love even numbers
1 2 hey its an even number
we love even numbers
3 4 hey its an even number
we love even numbers
5 6 hey its an even number
we love even numbers
7 8 hey its an even number
we love even numbers
9 Done

• As a placeholder for future code

• when the pass statement is executed, nothing happens;

• but, it avoid a syntax error when empty code is not allows

59

Pass statement

for item in my_list:
No action needed for now
pass

def function_that_does_nothing_yet():
pass

class MyEmptyClass:
pass

age = 18
if age < 18:

TODO: Implement age restriction logic
pass

else:
print("You are old enough to vote.")

• A for loop can have an optional else block at the end of the loop

• else part is executed if and only if all items in the sequence are processed successfully

60

For loop with else

Only print code if all iterations completed
Enter a number to check for: 100
0 1 2 3 4 5
All iterations successful

print('Only print code if all iterations completed')
num = int(input('Enter a number to check for: '))
for i in range(0, 6):

if i == num:
break

print(i, ' ', end='')
else:

print()
print('All iterations successful')

• A for loop can have an optional else block at the end of the loop

• not executed if there are some fails in the loop

• for loop may fail to process all elements in the loop if for some reason an error occurs (for

example by a syntax error) or if you break the loop

61

For loop with else

print('Only print code if all iterations completed')
num = int(input('Enter a number to check for: '))
for i in range(0, 6):

if i == num:
break

print(i, ' ', end='')
else:

print()
print('All iterations successful')

Only print code if all iterations completed
Enter a number to check for: 3
0 1 2

• Typically, variable names should be meaningful

• The one exception to this rule related to loop variable names used with for loops over ranges

• very common to find that these loop variables are called ‘i’, ‘j’, etc.

• you should consider using these variable names in looping constructs,

• and avoid using them elsewhere

62

Note: Loop variable naming

• P03-07: 1부터 100까지 정수의 합을 계산하여 출력하는 프로그램을 작성해보세요.

• 사용자로부터 입력받는 input 없음

• output: 1부터 100까지의 합

• note: variable for value of sum should be initialized to 0 first

63

In class practice

• P03-08 주어진 수의 factorial을 계산하는 프로그램을 작성해보세요.

• input: 정수 N

• output: N!

• if input is 5; factorial of number 5 (often written as 5!) which is 1 * 2 * 3 * 4 * 5 and equals 120

• not defined for negative numbers’ factorial, and 0! is 1

• if the number is less than 0, return with an error message

• check to see if the number is 0; print out 1

64

In class practice

• P03-09 500에서 1000 사이의 정수 중 홀수의 합을 계산하여 출력하는 프로그램을 작성해보세요.

• variable for value of sum should be initialized to 0 first

• use if statement in for/while loop statements

65

In class practice

sum of odd numbers between 500 and 5000 is 187500

• P03-10 Asterisks (*)을 활용하여 사용자로부터 입력받은 정수에 따라 아래와 같은 역피라미드를 출력해보세요.

• input: 피라미드의 가장 긴 변의 길이 N

• output: asterisks으로 구성된 역피라미드

• example for input value = 5

• 3 lines: +1 point

• 2 lines: +2 points

• only 1 line: +4 points

66

In class practice

* * * * *
 * * * *
 * * *
 * *
 *

4. Error and exception handling

• Exception handling (예외 처리)

• 프로그램 실행 중 발생할 수 있는 오류나 예상치 못한 상황을 처리하기 위한 메커니즘

• 예외 처리를 통해 프로그램의 안정성과 신뢰성을 확보할 수 있으며, 적절한 대응을 할 수 있음

• ex) 주민번호 입력란에 한글이 들어간 경우, 영문이름 입력안에 한글이 들어온 경우 등

• Syntax – ‘try-except-finally’ statement

68

What is exception handling?

try:
실행할 코드

except ExceptionType:
예외가 발생했을 때 처리할 코드

finally:
예외 발생 여부와 상관없이 실행되는 부분

• 단일 예외 처리

• try-except statement

69

Examples of exception handling

try:
예외가 발생할 수 있는 코드
result = 10 / 0

except ZeroDivisionError:
ZeroDivisionError 발생 시 실행되는 코드
print("0으로 나눌 수 없습니다.")

try:
my_list = [1, 2, 3]
print(my_list[3])

except IndexError:
print("인덱스 범위를 벗어났습니다.")

• 여러 예외 동시 처리

• except문에서 괄호를 사용해서 여러 예외를 동시에 처리

• 예외의 정보 접근

• 예외 객체에 접근하여 예외와 관련된 정보를 획득 가능

70

Examples of exception handling

try:
 result = 10 / "2"
except (ZeroDivisionError, TypeError):
 print("0으로 나누거나 타입 오류가 발생했습니다.")

try:
 result = 10 / 0
except ZeroDivisionError as e:
 print(f"오류 발생: {e}")

• finally

• 예외 발생 여부와 관계없이 학상 실행되는 코드

• 주로 자원 해제 등의 정리 작업에 활용

71

Examples of exception handling

try:
 result = 10 / 2
except ZeroDivisionError:
 print("0으로 나눌 수 없습니다.")
finally:
 print("예외 발생 여부와 상관없이 실행됩니다.")

• else

• 예외가 발생하지 않았을 때 실행되는 코드

• else 블록은 except 블록 다음에 위치해야 함

72

Examples of exception handling

try:
 result = 10 / 2
except ZeroDivisionError:
 print("0으로 나눌 수 없습니다.")
else:
 print("예외가 발생하지 않았습니다. 결과:", result)

• Python에서의 예외

• Python 표준 라이브러리에 정의된 예외 클래스

73

Examples of exception handling

BaseException

SystemExit

KeyboardInterrupt

StopIteration

ArithemticError

AttributeError

EOFError

NameError

OSError

TypeError

ValueError

IndexError

ModuleNotFoundError

...

• What is the output of the following code?

• a) 19 16 13 10

• b) 10 13 16 19

• c) 11 14 17 20

• d) 20 17 14 11

74

Quiz

for i in range(20, 10, -3):
print(i, end=' ')

End of slide

