Class

Python Programming

Byeongjoon Noh

powernoh@sch.ac. kr

m SOON CHUN HYANG
B UNIVERSITY

Most of the slides are available on Senseable Al Lab homepage: https://sailab.space/courses/

https://sailab.space/courses/

Contents

1. Introduction on object orientation
2. Python class

3. Class inheritance

Textbook: Chapter 17, Chapter 18, Chapter 19, Chapter 20, Chapter 21, Chapter 22, Chapter 23, Chapter26,
Chapter 27

1. Introduction on object orientation

Object-oriented programming (OOP)

* A computer programming model that organizes software design around data, or objects, rather than

functions and logic

Polymorphism

Object Oriented

Programming
(OOP)

Encapsulation

Key concepts

» Class
» a blueprint for creating objects

» defines a datatypes by bundling data and methods that operate on that data

* Object
e an instance of a class

« each object can have unique data (attributes) and share the structure and behavior defined by its

class

Key concepts

* |nheritance
* a mechanism for a new class to inherit properties and behaviors from an existing class

» allowing for code reuse and the creation of hierarchical relationships among classes

SINGLE INHERITANCE MULTILEVEL INHERITANCE MULTIPLE INHERITANCE HIERARCHICAL INHERITANCE

“ Class A Class B ass A
v I |]

V Class B % |

ClaSS B Inherits Class A J7 ClaSS B ClaSS C Class D
Inherits Class A - Inherits Class A Inherits Class A Inherits Class A
Class C
L Inherits Class A, B
Class C
Inherits Class B

Key concepts

* Encapsulation
» the bundling of data with the methods that operate on that data

* restricting direct access to some of an objects’ components, preventing accidental interference and

misuse of the methods and data

class Person:

class
def __init__(self, name, age):

E
N
E
N — — C
c self.name = name Data A
A self.age = age attributes P
. p —_—
Methods Variables < | def display(set): ¥
U
L print(self.name) | Method L
A print(self.age) A
T __ - Data attributes T
‘I) (Variables) |
C I a SS N Wrapping up data and methods methods 8

associated with that data into a single —_—
unit is called encapsulation in Python

Key concepts

* Polymorphism

» the ability to present the same interface for differing underlying data types

Count of Characters 5

- len('Jessa')

Count of Items 3

NS len([10, "Emma’, 20])

Dictionary\ So

o Count of keys 2

len({1: 'J', 2: 'K'})

Polymorphic len() function

Advantages

* Modularity: the source code for a class can be written and maintained independently of the source code

for other classes
» Reusability: classes can be reused in different programs

* Pluggable and debugging ease: objects are typically self-contained, and it is easy to swap out objects, as

well as identify and fix issue
* Productivity
» Data redundancy
» Code flexibility

« Security

OOP vs, Procedural programming

» Diagrams for OOP and procedural programming

Eat
Wake up Breakfast
Wash
Student Go
Eat breakfast Get on
School
\4
Get on the bus Bus

2. Python class

Objects in Python

« Everything is “object” in Python

» a type or class of thins; int, float, str, chr, dictionary, list, generator, etc.

print(type(4))
print(type(5.6))
print(type(True))
print(type('Ewan'))
print(type([1, 2, 3, 4]))

<class 'int'>
<class 'float'>
<class 'bool'>
<class 'str'>
<class 'list'>

Class definition

 Use "class™ keyword to define a new class

* General syntax

class nameOfClass(SuperClass):
__init
attributes
methods

» three component in class
« constructor (initializer) = __init_ ()~
« naming convention: double underbars (*__') as prefix and postfix in method name
* attributes
* member variables within an instance of the class
* methods

» the name given to behavior that is linked directly to the class; not free-standing function

Class definition

« “Person class definition

class Person:
def _init (self, name, age):
self.name = name
self.age = age
« “self” as special variable
* indicates the values with “~self" stored within an instance of class

» convention in Python for the first parameter of a method in a class to be “self"

» refers to the object itself

14

Class definition

* Roles of "self” in "Person” class

class Person:
def _init (self, name, age):
self.name = name
self.age = age
* 1) defining instance methods
 “self is the first parameterin ©~__ init ()~ method
» refers to the instance of “Person™ that is being created

 2) accessing and setting attributes

« "self.name = name set the "name’ attributes of the “self to the value passed in the

"name” parameter

« "self.age = age similarly set the "age™ attributes to the value passed in the "age"

parameter

15

Class definition

* Roles of "self” in "Person” class

class Person:
def _init (self, name, age):
self.name = name
self.age = age
 3) creating an instance

 when a new "Person” object is created with “person = Person(“Allice”, 30)°, a new

instance of “Person’ is created
* Python automatically passes this new instance as the first argument to °~__init ()~ method
 4) accessing attributes

 when you call “person.name” or "person.age’, accessing the "name™ and "age attributes of

the “person” instance

Creating instances

* |nstance creation of “Person” class

class Person:
def _init (self, name, age):

self.name = name e
self.age = age pl | name = John)
] s age = 36 7_
pl = Person("John", 36) ~ <Person>
p2 = Person("Phoebe", 21) p2 name = Phoebe

 "pl” holds a reference to the instance or object of the class "Person™ whose attributes hold the

value “John’ (for name attribute) and 36 (for age attribute)
« “p2° also holds ‘Phoebe’ and 21

« “pl° and “p2° are “instance (or object)”; its own unique identifier

print(id(pl)) # Output: 1631806549904
print(id(p2)) # Output: 1631806550224

17

Note: Instance assignment

* Assignment the instance to another variable

pl = Person("John", 36)

px = pl
print(id(pl)) # Output: 1631806549904
print(id(px)) # Output: 1631806549904

* it holds the address of the object

pl

PX

P2

<Person>
name = John

\ = age - 36 (‘7»'.‘.’_,_/")‘

|

<Person>
name = Phoebe

<<= age = 21

18

Accessing object attributes

« Accessing the attributes using dot (*.') notation

* reading the attributes

print(pl.name, "is", pl.age)
print(p2.name, "is", p2.age)

John 1is 36
Phoebe is 21

» updating the attribute of an object directly

pl.name = "Bob"
pl.age = 54
print(pl.name, "is", pl.age)

Bob is 54

Accessing object attributes

* Private variables

» variable names prefixed with double underscores within a class definition

class Person:
def _init (self, name, age):
self. name = name
self. age = age

pl = Person("John", 36)
print(pl. name, "is", pl. age)

Traceback (most recent call last):
File "C:\Users\#2 LIO|MIZ 2O 2fU\src\note.py", line 11, in <module>

print(pl. name, 'is', pl. age)

NNNNNANNNNN

AttributeError: 'Person' object has no attribute

__hame'’

* Protected variables (haming convention)

* single underscores; = _name”

Default string representation

» Default string representation for a class
e °_str_ ()
» used to create a readable string representation of an object

» provide a friendly, readable representation suitable for display to end-users

« __repr()_
* provides an unambiguous representation of the object

* Should return a string that when fed back to “eval() ", should ideally recreate the object or

give a detailed description of the object

« whatisa "eval() 7

21

Default string representation

» Default string representation for a class

class Person:
def init (self, name, age):
self.name = name
self.age = age

def str_ (self):
return f"{self.name} is {self.age}"

def _ repr_ (self):
return f"Person(name="'{self.name}', age={self.age})"

person = Person("Alice", 30)
print(person)
print(repr(person))

Alice is 30
Person(name="Alice', age=30)

Instance methods

* Defining a method in “Person” class

class Person:
def init (self, name, age):
self.name = name
self.age = age

def str_ (self):
return f"{self.name} is {self.age}"

def _ repr_ (self):
return f"Person(name="'{self.name}', age={self.age})"

def brithday(self):
print("Happy birthday you were", self.age)
self.age += 1
print("You are now", self.age)

23

Instance methods

* Defining a method in “Person” class

p3 = Person("Adam", 19)
print(p3)

p3.brithday()

print(p3)

Adam is 19

Happy birthday you were 19
You are now 20

Adam is 20

24

Instance methods

* Defining a method in “Person” class

class Person:
#

rate of pay = 7.5
if self.age >= 21:
rate_of pay += 2.50
return hours_worked * rate of pay

pay = p2.calculate pay(40)
print('Pay’, p2.name, pay)
pay = p3.calculate pay(40)
print('Pay’, p3.name, pay)

def calculate pay(self, hours worked):

Pay Phoebe 400.0
Pay Adam 300.0

25

Instance methods

« Static method

» defined within a class but are not tied to either the class nor any instance of class
» do not receive the special first parameter representing ~self"

» the same as free-standing functions, but defined without a class for convenience or to provide a way

to group such function together

class Person:

@staticmethod
def static_ function():
print('Static method")

Person.static_function()

* Python does not provide method overloading

Removing instance

* Delete objects which allows the memory they are using to be reclaimed and used by other parts

 Use "del” keyword

pl = Person('John', 36)
print(pl)
del p1

27

Intrinsic attributes

» Every class has a set of intrinsic attributes set up

» Classes have the following intrinsic attributes:

e _name__ : the name of the class

« °_ module_ " : the module (or library) from which it was loaded

« °_ bases_ " : a collection of its base classes (see inheritance later in this book)

« ° dict_ ~ : adictionary (a set of key-value pairs) containing all the attributes (including methods)
e ° doc_ " : the documentation string

* For objects:
e ° class__ " : the name of the class of the object

« °_dict_~ : adictionary containing all the object’s attributes.

28

Intrinsic attributes

Person("John", 36)
Person("Phoebe", 21)

pl
p2

print('Class attributes')
print(Person. name_)

print('Object attributes')
print(pl. class)
print(pl. dict)
print(p2. class)
print(p2. dict)

Class attributes

Person

Object attributes

<class ' main__.Person'>
{'name': 'John', 'age': 36}
<class ' main__.Person'>

{"'name': 'Phoebe', 'age': 21}

29

In class practice

* P06-01 Write 'Rectangle’ class
* attributes
« width and height: width and height of rectangle
* methods
« _init_() and _str__()
 area(): returns the size of rectangle

* requirement: use dictionary as parameter as __init__() method

class Rectangle:
" CODE HERE'''

rect = Rectangle(dict({'width': 10, 'height': 15}))
rect.area()

print(rect) # Output: width = 10 and height = 15
print(f"Size of rectangle = {rect.area()}")

30

3. Class inheritance

What is inheritance?

* Class inheritance in Python
» a fundamental concept in OOP

« allows a class (a.k.a subclass or child class) to inherit attributes and methods

from another class (a.k.a. superclass or parent class)

» promote code reusability and establishes a hierarchical relationship between classes

Person

name
age
birthday()

T

Employee

id
calculate_pay()

32

Descriptions

* |nherits features

* a subclass inherits attributes and methods from the superclass, allowing it to reuse code

» Extensibility
» a subclass can extends or modify the functionalities of the superclass

« can add new attributes and methods or override existing ones (polymorphism)

 Hierarchical relationship

* inheritance creates a tree-like hierarchy of classes, simplifies code organization and relationships

between different entities

33

Syntax

» Subclass takes the name of superclass as parameter in definition line

class BaseClass:
Base class code

class DerivedClass(BaseClass):
Derived class code

34

Usage of class inheritance

» Subclass takes the name of superclass as parameter in definition line

class Person:
def _init (self, name, age):
self.name = name
self.age = age

o

class Employee(Person):
def _ init (self, name, age, employee id, department):
super()._ init_ (name, age) # Call the initializer of the Person class
self.employee id = employee id
self.department = department

« using super() to call the super class

35

Usage of class inheritance

» Subclass takes the name of superclass as parameter in definition line

class Animal: # Superclass
def init (self, species):
self.species = species

def make sound(self):
print("Some generic sound")

class Dog(Animal): # Subclass
def init (self, species, name):
super(). init_ (species)
self.name = name

def make sound(self):
print("Woof!")

my dog = Dog("Canine", "Buddy")
print(my_dog.species) # Output: Canine
my dog.make_ sound() # Output: Woof!

36

Method overriding

» A feature in OOP where a subclass provides a specific implementation of a method that is already defined

in its parent class

» allowing the subclass to customize or extend the behavior of that method

class Animal:
def speak(self):
return "This animal makes a generic sound”

class Dog(Animal):
def speak(self):
return "Woof! Woof!"

generic_animal = Animal()
print(generic_animal.speak()) # Output: This animal makes a generic sound

my_dog = Dog()
print(my_dog.speak()) # Output: Woof! Woof!

37

Quiz

« What is the result?

class A:
def greet(self):
return "Hello"

class B(A):
pass

class C(B):
def greet(self):

return super().greet() + ", World!"

c = C()
print(c.greet())

« a) Hello

e ¢c) World!

b) Hello, World!
d) Error

38

Quiz

« What is the result?

class Parent:
def init (self):
self.message = "Hello"

class Child(Parent):
def init (self):
super(). init_ ()
self.message = self.message + "World"

child = Child()
print(child.message)

« a) Hello b) HelloWorld
e ¢) World d) Error

39

In class practice

* P06-02 Write 'Circle' class and 'Triangle' class that inherit from ‘Shape’

« two methods (area() and perimeter()) override in ‘Circle’ and ‘Triangle' classes

class Shape:
def init (self, name):
self.name = name

def area(self):
raise NotImplementedError("This method should be overridden by subclasses")

def perimeter(self):
raise NotImplementedError("This method should be overridden by subclasses")

class Circle(Shape):
"'*' CODE HERE '''

class Triangle(Shape):
"'' CODE HERE "''

40

In class practice

* P06-02 Write 'Circle' class and 'Triangle' class that inherit from ‘Shape’
« two methods (area() and perimeter()) override in ‘Circle’ and ‘Triangle' classes

» expected result

circle = Circle(5)
print(f"Area of {circle.name} is {circle.area():.2f} and perimeter is {circle.perimeter():.2f}")

triangle = Triangle(4)
print(f"Area of {triangle.name} is {triangle.area():.2f} and perimeter is
{triangle.perimeter():.2f}")

The area of the Circle is 78.54 and the perimeter is 31.42
The area of the Triangle is 6.93 and the perimeter is 12.00

41

End of slide

