
Byeongjoon Noh

powernoh@sch.ac.kr

Python Programming

Most of the slides are available on Senseable AI Lab homepage: https://sailab.space/courses/

Class

https://sailab.space/courses/

2

1. Introduction on object orientation

2. Python class

3. Class inheritance

Textbook: Chapter 17, Chapter 18, Chapter 19, Chapter 20, Chapter 21, Chapter 22, Chapter 23, Chapter26,

Chapter 27

Contents

1. Introduction on object orientation

• A computer programming model that organizes software design around data, or objects, rather than

functions and logic

4

Object-oriented programming (OOP)

• Class

• a blueprint for creating objects

• defines a datatypes by bundling data and methods that operate on that data

• Object

• an instance of a class

• each object can have unique data (attributes) and share the structure and behavior defined by its

class

5

Key concepts

• Inheritance

• a mechanism for a new class to inherit properties and behaviors from an existing class

• allowing for code reuse and the creation of hierarchical relationships among classes

6

Key concepts

• Encapsulation

• the bundling of data with the methods that operate on that data

• restricting direct access to some of an objects’ components, preventing accidental interference and

misuse of the methods and data

7

Key concepts

• Polymorphism

• the ability to present the same interface for differing underlying data types

8

Key concepts

• Modularity: the source code for a class can be written and maintained independently of the source code

for other classes

• Reusability: classes can be reused in different programs

• Pluggable and debugging ease: objects are typically self-contained, and it is easy to swap out objects, as

well as identify and fix issue

• Productivity

• Data redundancy

• Code flexibility

• Security

• …

9

Advantages

• Diagrams for OOP and procedural programming

10

OOP vs. Procedural programming

Wake up

Wash

Eat breakfast

Get on the bus

Student

Bus

School

Breakfast
Eat

Get on

Go

2. Python class

• Everything is “object” in Python

• a type or class of thins; int, float, str, chr, dictionary, list, generator, etc.

12

Objects in Python

<class 'int'>
<class 'float'>
<class 'bool'>
<class 'str'>
<class 'list'>

print(type(4))
print(type(5.6))
print(type(True))
print(type('Ewan'))
print(type([1, 2, 3, 4]))

• Use `class` keyword to define a new class

• General syntax

• three component in class

• constructor (initializer) `__init__()`

• naming convention: double underbars (`__`) as prefix and postfix in method name

• attributes

• member variables within an instance of the class

• methods

• the name given to behavior that is linked directly to the class; not free-standing function

13

Class definition

class nameOfClass(SuperClass):
__init__
attributes
methods

• `Person` class definition

• `self` as special variable

• indicates the values with `self` stored within an instance of class

• convention in Python for the first parameter of a method in a class to be `self`

• refers to the object itself

14

Class definition

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

• Roles of `self` in `Person` class

• 1) defining instance methods

• `self` is the first parameter in `__init__()` method

• refers to the instance of `Person` that is being created

• 2) accessing and setting attributes

• `self.name = name` set the `name` attributes of the `self` to the value passed in the

`name` parameter

• `self.age = age` similarly set the `age` attributes to the value passed in the `age`

parameter

15

Class definition

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

• Roles of `self` in `Person` class

• 3) creating an instance

• when a new `Person` object is created with `person = Person(“Allice”, 30)`, a new

instance of `Person` is created

• Python automatically passes this new instance as the first argument to `__init__()` method

• 4) accessing attributes

• when you call `person.name` or `person.age`, accessing the `name` and `age` attributes of

the `person` instance

16

Class definition

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

• Instance creation of `Person` class

• `p1` holds a reference to the instance or object of the class `Person` whose attributes hold the

value ‘John’ (for name attribute) and 36 (for age attribute)

• `p2` also holds ‘Phoebe’ and 21

• `p1` and `p2` are “instance (or object)”; its own unique identifier

17

Creating instances

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

'''
'''
p1 = Person("John", 36)
p2 = Person("Phoebe", 21)

print(id(p1)) # Output: 1631806549904
print(id(p2)) # Output: 1631806550224

• Assignment the instance to another variable

• it holds the address of the object

18

Note: Instance assignment

p1 = Person("John", 36)
px = p1
print(id(p1)) # Output: 1631806549904
print(id(px)) # Output: 1631806549904

• Accessing the attributes using dot (`.`) notation

• reading the attributes

• updating the attribute of an object directly

19

Accessing object attributes

print(p1.name, "is", p1.age)
print(p2.name, "is", p2.age)

John is 36
Phoebe is 21

p1.name = "Bob"
p1.age = 54
print(p1.name, "is", p1.age)

Bob is 54

• Private variables

• variable names prefixed with double underscores within a class definition

• Protected variables (naming convention)

• single underscores; `_name`
20

Accessing object attributes

class Person:
def __init__(self, name, age):

self.__name = name
self.__age = age

'''
'''
p1 = Person("John", 36)
print(p1.__name, "is", p1.__age)

Traceback (most recent call last):
File "C:\Users\#2 파이썬프로그래밍\src\note.py", line 11, in <module>
print(p1.__name, 'is', p1.__age)

^^^^^^^^^
AttributeError: 'Person' object has no attribute '__name'

• Default string representation for a class

• `__str__()`

• used to create a readable string representation of an object

• provide a friendly, readable representation suitable for display to end-users

• `__repr()__`

• provides an unambiguous representation of the object

• Should return a string that when fed back to `eval()`, should ideally recreate the object or

give a detailed description of the object

• what is a `eval()`?

21

Default string representation

• Default string representation for a class

22

Default string representation

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

def __str__(self):
return f"{self.name} is {self.age}"

def __repr__(self):
return f"Person(name='{self.name}', age={self.age})"

person = Person("Alice", 30)
print(person)
print(repr(person))

Alice is 30
Person(name='Alice', age=30)

• Defining a method in `Person` class

23

Instance methods

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

def __str__(self):
return f"{self.name} is {self.age}"

def __repr__(self):
return f"Person(name='{self.name}', age={self.age})"

def brithday(self):
print("Happy birthday you were", self.age)
self.age += 1
print("You are now", self.age)

• Defining a method in `Person` class

24

Instance methods

p3 = Person("Adam", 19)
print(p3)
p3.brithday()
print(p3)

Adam is 19
Happy birthday you were 19
You are now 20
Adam is 20

• Defining a method in `Person` class

25

Instance methods

class Person:
...
def calculate_pay(self, hours_worked):

rate_of_pay = 7.5
if self.age >= 21:

rate_of_pay += 2.50
return hours_worked * rate_of_pay

'''
'''
pay = p2.calculate_pay(40)
print('Pay’, p2.name, pay)
pay = p3.calculate_pay(40)
print('Pay’, p3.name, pay)

Pay Phoebe 400.0
Pay Adam 300.0

• Static method

• defined within a class but are not tied to either the class nor any instance of class

• do not receive the special first parameter representing `self`

• the same as free-standing functions, but defined without a class for convenience or to provide a way

to group such function together

• Python does not provide method overloading

26

Instance methods

class Person:

@staticmethod
def static_function():

print('Static method')

'''
'''
Person.static_function()

• Delete objects which allows the memory they are using to be reclaimed and used by other parts

• Use `del` keyword

27

Removing instance

p1 = Person('John', 36)
print(p1)
del p1

• Every class has a set of intrinsic attributes set up

• Classes have the following intrinsic attributes:

• `__name__` : the name of the class

• `__module__` : the module (or library) from which it was loaded

• `__bases__` : a collection of its base classes (see inheritance later in this book)

• `__dict__` : a dictionary (a set of key-value pairs) containing all the attributes (including methods)

• `__doc__` : the documentation string

• For objects:

• `__class__` : the name of the class of the object

• `__dict__` : a dictionary containing all the object’s attributes.

28

Intrinsic attributes

29

Intrinsic attributes

p1 = Person("John", 36)
p2 = Person("Phoebe", 21)

print('Class attributes')
print(Person.__name__)

print('Object attributes')
print(p1.__class__)
print(p1.__dict__)
print(p2.__class__)
print(p2.__dict__)

Class attributes
Person
Object attributes
<class '__main__.Person'>
{'name': 'John', 'age': 36}
<class '__main__.Person'>
{'name': 'Phoebe', 'age': 21}

• P06-01 Write `Rectangle` class

• attributes

• width and height: width and height of rectangle

• methods

• __init__() and __str__()

• area(): returns the size of rectangle

• requirement: use dictionary as parameter as __init__() method

30

In class practice

class Rectangle:
''' CODE HERE'''

'''
'''
rect = Rectangle(dict({'width': 10, 'height': 15}))
rect.area()
print(rect) # Output: width = 10 and height = 15
print(f"Size of rectangle = {rect.area()}")

3. Class inheritance

• Class inheritance in Python

• a fundamental concept in OOP

• allows a class (a.k.a subclass or child class) to inherit attributes and methods

from another class (a.k.a. superclass or parent class)

• promote code reusability and establishes a hierarchical relationship between classes

32

What is inheritance?

• Inherits features

• a subclass inherits attributes and methods from the superclass, allowing it to reuse code

• Extensibility

• a subclass can extends or modify the functionalities of the superclass

• can add new attributes and methods or override existing ones (polymorphism)

• Hierarchical relationship

• inheritance creates a tree-like hierarchy of classes, simplifies code organization and relationships

between different entities

33

Descriptions

• Subclass takes the name of superclass as parameter in definition line

34

Syntax

class BaseClass:
Base class code

class DerivedClass(BaseClass):
Derived class code

• Subclass takes the name of superclass as parameter in definition line

• using super() to call the super class

35

Usage of class inheritance

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

...

class Employee(Person):
def __init__(self, name, age, employee_id, department):

super().__init__(name, age) # Call the initializer of the Person class
self.employee_id = employee_id
self.department = department

...

• Subclass takes the name of superclass as parameter in definition line

36

Usage of class inheritance

class Animal: # Superclass
def __init__(self, species):

self.species = species

def make_sound(self):
print("Some generic sound")

class Dog(Animal): # Subclass
def __init__(self, species, name):

super().__init__(species)
self.name = name

def make_sound(self):
print("Woof!")

my_dog = Dog("Canine", "Buddy")
print(my_dog.species) # Output: Canine
my_dog.make_sound() # Output: Woof!

• A feature in OOP where a subclass provides a specific implementation of a method that is already defined

in its parent class

• allowing the subclass to customize or extend the behavior of that method

37

Method overriding

class Animal:
def speak(self):

return "This animal makes a generic sound"

class Dog(Animal):
def speak(self):

return "Woof! Woof!"

generic_animal = Animal()
print(generic_animal.speak()) # Output: This animal makes a generic sound

my_dog = Dog()
print(my_dog.speak()) # Output: Woof! Woof!

• What is the result?

• a) Hello b) Hello, World!

• c) World! d) Error

38

Quiz

class A:
def greet(self):

return "Hello"

class B(A):
pass

class C(B):
def greet(self):

return super().greet() + ", World!"

c = C()
print(c.greet())

• What is the result?

• a) Hello b) HelloWorld

• c) World d) Error

39

Quiz

class Parent:
def __init__(self):

self.message = "Hello"

class Child(Parent):
def __init__(self):

super().__init__()
self.message = self.message + "World"

child = Child()
print(child.message)

• P06-02 Write `Circle` class and `Triangle` class that inherit from `Shape`

• two methods (area() and perimeter()) override in `Circle` and `Triangle` classes

• Circle class:

• attribute: radius

40

In class practice

class Shape:
def __init__(self, name):

self.name = name

def area(self):
raise NotImplementedError("This method should be overridden by subclasses")

def perimeter(self):
raise NotImplementedError("This method should be overridden by subclasses")

class Circle(Shape):
''' CODE HERE '''

class Triangle(Shape):
''' CODE HERE '''

• P06-02 Write `Circle` class and `Triangle` class that inherit from `Shape`

• two methods (area() and perimeter()) override in `Circle` and `Triangle` classes

• expected result

• Circle class:

• attribute: radius

41

In class practice

circle = Circle(5)
print(f"Area of {circle.name} is {circle.area():.2f} and perimeter is {circle.perimeter():.2f}")

triangle = Triangle(4)
print(f"Area of {triangle.name} is {triangle.area():.2f} and perimeter is
{triangle.perimeter():.2f}")

The area of the Circle is 78.54 and the perimeter is 31.42
The area of the Triangle is 6.93 and the perimeter is 12.00

End of slide

