
Byeongjoon Noh

powernoh@sch.ac.kr

Python Programming

Most of the slides are available on Senseable AI Lab homepage: https://sailab.space/courses/

Class

https://sailab.space/courses/


2

1. Introduction on object orientation

2. Python class

3. Class inheritance

Textbook: Chapter 17, Chapter 18, Chapter 19, Chapter 20, Chapter 21, Chapter 22, Chapter 23, Chapter26, 

Chapter 27

Contents



1. Introduction on object orientation



• A computer programming model that organizes software design around data, or objects, rather than 

functions and logic
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Object-oriented programming (OOP)



• Class

• a blueprint for creating objects

• defines a datatypes by bundling data and methods that operate on that data

• Object

• an instance of a class

• each object can have unique data (attributes) and share the structure and behavior defined by its 

class
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Key concepts



• Inheritance

• a mechanism for a new class to inherit properties and behaviors from an existing class

• allowing for code reuse and the creation of hierarchical relationships among classes
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Key concepts



• Encapsulation

• the bundling of data with the methods that operate on that data

• restricting direct access to some of an objects’ components, preventing accidental interference and 

misuse of the methods and data
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Key concepts



• Polymorphism

• the ability to present the same interface for differing underlying data types
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Key concepts



• Modularity: the source code for a class can be written and maintained independently of the source code 

for other classes

• Reusability: classes can be reused in different programs

• Pluggable and debugging ease: objects are typically self-contained, and it is easy to swap out objects, as 

well as identify and fix issue

• Productivity

• Data redundancy

• Code flexibility

• Security

• …
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Advantages



• Diagrams for OOP and procedural programming
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OOP vs. Procedural programming

Wake up

Wash

Eat breakfast

Get on the bus

Student

Bus

School

Breakfast
Eat

Get on

Go



2. Python class



• Everything is “object” in Python

• a type or class of thins; int, float, str, chr, dictionary, list, generator, etc.
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Objects in Python

<class 'int'>
<class 'float'>
<class 'bool'>
<class 'str'>
<class 'list'>

print(type(4))
print(type(5.6))
print(type(True))
print(type('Ewan'))
print(type([1, 2, 3, 4]))



• Use `class` keyword to define a new class

• General syntax

• three component in class

• constructor (initializer) `__init__()`

• naming convention: double underbars (`__`) as prefix and postfix in method name

• attributes 

• member variables within an instance of the class

• methods

• the name given to behavior that is linked directly to the class; not free-standing function
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Class definition

class nameOfClass(SuperClass):
__init__
attributes
methods



• `Person` class definition

• `self` as special variable

• indicates the values with `self` stored within an instance of class

• convention in Python for the first parameter of a method in a class to be `self`

• refers to the object itself
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Class definition

class Person:
def __init__(self, name, age):

self.name = name
self.age = age



• Roles of `self` in `Person` class

• 1) defining instance methods

• `self` is the first parameter in `__init__()` method

• refers to the instance of `Person` that is being created

• 2) accessing and setting attributes

• `self.name = name` set the `name` attributes of the `self` to the value passed in the 

`name` parameter

• `self.age = age` similarly set the `age` attributes to the value passed in the `age` 

parameter
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Class definition

class Person:
def __init__(self, name, age):

self.name = name
self.age = age



• Roles of `self` in `Person` class

• 3) creating an instance

• when a new `Person` object is created with `person = Person(“Allice”, 30)`, a new 

instance of `Person` is created

• Python automatically passes this new instance as the first argument to `__init__()` method

• 4) accessing attributes

• when you call `person.name` or `person.age`, accessing the `name` and `age` attributes of 

the `person` instance
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Class definition

class Person:
def __init__(self, name, age):

self.name = name
self.age = age



• Instance creation of `Person` class

• `p1` holds a reference to the instance or object of the class `Person` whose attributes hold the 

value ‘John’ (for name attribute) and 36 (for age attribute)

• `p2` also holds ‘Phoebe’ and 21

• `p1` and `p2` are “instance (or object)”; its own unique identifier
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Creating instances

class Person: 
def __init__(self, name, age):

self.name = name
self.age = age

'''
'''
p1 = Person("John", 36)
p2 = Person("Phoebe", 21)

print(id(p1)) # Output: 1631806549904
print(id(p2)) # Output: 1631806550224



• Assignment the instance to another variable

• it holds the address of the object
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Note: Instance assignment

p1 = Person("John", 36)
px = p1
print(id(p1)) # Output: 1631806549904
print(id(px)) # Output: 1631806549904



• Accessing the attributes using dot (`.`) notation

• reading the attributes

• updating the attribute of an object directly
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Accessing object attributes

print(p1.name, "is", p1.age)
print(p2.name, "is", p2.age)

John is 36
Phoebe is 21

p1.name = "Bob"
p1.age = 54
print(p1.name, "is", p1.age)

Bob is 54



• Private variables

• variable names prefixed with double underscores within a class definition

• Protected variables (naming convention)

• single underscores; `_name`
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Accessing object attributes

class Person: 
def __init__(self, name, age):

self.__name = name
self.__age = age

'''
'''
p1 = Person("John", 36)
print(p1.__name, "is", p1.__age)

Traceback (most recent call last):
File "C:\Users\#2 파이썬프로그래밍\src\note.py", line 11, in <module>
print(p1.__name, 'is', p1.__age)

^^^^^^^^^
AttributeError: 'Person' object has no attribute '__name'



• Default string representation for a class

• `__str__()` 

• used to create a readable string representation of an object

• provide a friendly, readable representation suitable for display to end-users

• `__repr()__`

• provides an unambiguous representation of the object

• Should return a string that when fed back to `eval()`, should ideally recreate the object or 

give a detailed description of the object

• what is a `eval()`?
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Default string representation



• Default string representation for a class
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Default string representation

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

def __str__(self):
return f"{self.name} is {self.age}"

def __repr__(self):
return f"Person(name='{self.name}', age={self.age})"

person = Person("Alice", 30)
print(person) 
print(repr(person)) 

Alice is 30
Person(name='Alice', age=30)



• Defining a method in `Person` class
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Instance methods

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

def __str__(self):
return f"{self.name} is {self.age}"

def __repr__(self):
return f"Person(name='{self.name}', age={self.age})"

def brithday(self):
print("Happy birthday you were", self.age)
self.age += 1
print("You are now", self.age)



• Defining a method in `Person` class
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Instance methods

p3 = Person("Adam", 19)
print(p3)
p3.brithday()
print(p3)

Adam is 19
Happy birthday you were 19
You are now 20
Adam is 20



• Defining a method in `Person` class
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Instance methods

class Person:
# ...
def calculate_pay(self, hours_worked):

rate_of_pay = 7.5
if self.age >= 21:

rate_of_pay += 2.50
return hours_worked * rate_of_pay

'''
'''
pay = p2.calculate_pay(40)
print('Pay’, p2.name, pay)
pay = p3.calculate_pay(40)
print('Pay’, p3.name, pay)

Pay Phoebe 400.0
Pay Adam 300.0



• Static method 

• defined within a class but are not tied to either the class nor any instance of class

• do not receive the special first parameter representing `self`

• the same as free-standing functions, but defined without a class for convenience or to provide a way 

to group such function together

• Python does not provide method overloading
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Instance methods

class Person:

@staticmethod
def static_function():

print('Static method')

'''
'''
Person.static_function()



• Delete objects which allows the memory they are using to be reclaimed and used by other parts

• Use `del` keyword

27

Removing instance

p1 = Person('John', 36)
print(p1)
del p1



• Every class has a set of intrinsic attributes set up

• Classes have the following intrinsic attributes:

• `__name__` : the name of the class

• `__module__` : the module (or library) from which it was loaded

• `__bases__` : a collection of its base classes (see inheritance later in this book)

• `__dict__` : a dictionary (a set of key-value pairs) containing all the attributes (including methods) 

• `__doc__` : the documentation string 

• For objects:

• `__class__` : the name of the class of the object

• `__dict__` : a dictionary containing all the object’s attributes.
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Intrinsic attributes
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Intrinsic attributes

p1 = Person("John", 36)
p2 = Person("Phoebe", 21)

print('Class attributes')
print(Person.__name__)

print('Object attributes')
print(p1.__class__)
print(p1.__dict__)
print(p2.__class__)
print(p2.__dict__)

Class attributes
Person
Object attributes
<class '__main__.Person'>
{'name': 'John', 'age': 36}
<class '__main__.Person'>
{'name': 'Phoebe', 'age': 21}



• P06-01 Write `Rectangle` class 

• attributes 

• width and height: width and height of rectangle

• methods

• __init__() and __str__()

• area(): returns the size of rectangle

• requirement: use dictionary as parameter as __init__() method
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In class practice

class Rectangle: 
''' CODE HERE'''

'''
'''
rect = Rectangle(dict({'width': 10, 'height': 15}))
rect.area()
print(rect) # Output: width = 10 and height = 15 
print(f"Size of rectangle = {rect.area()}")



3. Class inheritance



• Class inheritance in Python

• a fundamental concept in OOP

• allows a class (a.k.a subclass or child class) to inherit attributes and methods 

from another class (a.k.a. superclass or parent class)

• promote code reusability and establishes a hierarchical relationship between classes
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What is inheritance?



• Inherits features

• a subclass inherits attributes and methods from the superclass, allowing it to reuse code

• Extensibility

• a subclass can extends or modify the functionalities of the superclass

• can add new attributes and methods or override existing ones (polymorphism)

• Hierarchical relationship

• inheritance creates a tree-like hierarchy of classes, simplifies code organization and relationships 

between different entities
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Descriptions



• Subclass takes the name of superclass as parameter in definition line
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Syntax

class BaseClass:
# Base class code

class DerivedClass(BaseClass):
# Derived class code



• Subclass takes the name of superclass as parameter in definition line

• using super() to call the super class 
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Usage of class inheritance

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

# ...

class Employee(Person):
def __init__(self, name, age, employee_id, department):

super().__init__(name, age) # Call the initializer of the Person class
self.employee_id = employee_id
self.department = department

# ...



• Subclass takes the name of superclass as parameter in definition line
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Usage of class inheritance

class Animal: # Superclass
def __init__(self, species):

self.species = species

def make_sound(self):
print("Some generic sound")

class Dog(Animal): # Subclass
def __init__(self, species, name):

super().__init__(species) 
self.name = name

def make_sound(self):
print("Woof!")

my_dog = Dog("Canine", "Buddy")
print(my_dog.species) # Output: Canine
my_dog.make_sound() # Output: Woof!



• A feature in OOP where a subclass provides a specific implementation of a method that is already defined 

in its parent class

• allowing the subclass to customize or extend the behavior of that method
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Method overriding

class Animal:
def speak(self):

return "This animal makes a generic sound"

class Dog(Animal):
def speak(self):

return "Woof! Woof!"

generic_animal = Animal()
print(generic_animal.speak()) # Output: This animal makes a generic sound

my_dog = Dog()
print(my_dog.speak()) # Output: Woof! Woof!



• What is the result?

• a) Hello b) Hello, World!

• c) World! d) Error
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Quiz

class A:
def greet(self):

return "Hello"

class B(A):
pass

class C(B):
def greet(self):

return super().greet() + ", World!"

c = C()
print(c.greet())



• What is the result?

• a) Hello b) HelloWorld

• c) World d) Error
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Quiz

class Parent:
def __init__(self):

self.message = "Hello"

class Child(Parent):
def __init__(self):

super().__init__()
self.message = self.message + "World"

child = Child()
print(child.message)



• P06-02 Write `Circle` class and `Triangle` class that inherit from `Shape`

• two methods (area() and perimeter()) override in `Circle` and `Triangle` classes

• Circle class:

• attribute: radius 
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In class practice

class Shape:
def __init__(self, name):

self.name = name

def area(self):
raise NotImplementedError("This method should be overridden by subclasses")

def perimeter(self):
raise NotImplementedError("This method should be overridden by subclasses")

class Circle(Shape):
''' CODE HERE '''

class Triangle(Shape):
''' CODE HERE '''



• P06-02 Write `Circle` class and `Triangle` class that inherit from `Shape`

• two methods (area() and perimeter()) override in `Circle` and `Triangle` classes

• expected result

• Circle class:

• attribute: radius 
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In class practice

circle = Circle(5)
print(f"Area of {circle.name} is {circle.area():.2f} and perimeter is {circle.perimeter():.2f}")

triangle = Triangle(4)
print(f"Area of {triangle.name} is {triangle.area():.2f} and perimeter is 
{triangle.perimeter():.2f}")

The area of the Circle is 78.54 and the perimeter is 31.42
The area of the Triangle is 6.93 and the perimeter is 12.00



End of slide


