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1. Introduction

General phenomenon : The driver uses only visual cues
Need to detect and respond early to increase safety and efficiency
Lane change recognition and prediction are video action recognition problems

Many approaches using the front camera are suggested



1. Introduction

Different Approaches

Adaptive Cruise Control(ACC) < I Manual operation of the handle

Traffic Joam Assist(TJA) & Troffic Jom Chauffeur(TJC)

Highway Chauffeur(HHC) —

The most advanced system

Highway Autopilot(HA) —J



1. Introduction

Limitations exist

To fill in the gaps in the system, self-driving cars

use video-based behavioral recognition to predict lane changes.
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Fig. 1. Overview offthe proposed video action recognition approaches f
lane change recognjffon and prediction of surrounding vehicles, including Two-
Stream Network #wo-Stream Inflated 3D ConvNet, Spatiotemporal Multiplier
Network and S)fwFast Network.
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Two-Stream Network: Combines spatial and temporal streams to
recognize behavior

Two-Stream Infloted 3D ConvNet: Extends traditional two-stream
structures and transforms them into 3D to improve temporal and spatial
classification

Spatiotemporal Multiplier Networks: Combine spatial and temporal
ottributes to improve information transfer through interconnected
residual connections

SlowFast Networks: Capture temporal resolution by running two paths,
with the slow path capturing spatial meaning and the fast path capturing
temporal resolution
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* Two-Stream Network: Combines spatial and temporal streams to
recognize behavior

* Two-Stream Inflated 3D ConvNet: Extends traditional two-stream
structures and transforms them into 3D to improve temporal and spatial

classification

Recognition/

prediction * Spatiotemporal Multiplier Networks: Combine spatial and temporal
ottributes to improve information transfer through interconnected
residval connections

* SlowFast Networks: Capture temporal resolution by running two paths,
with the slow path capturing spatial meaning and the fast path capturing
temporal resolution



1. Introduction

Combine visual cues with temporal information

|

Predict lane changes for vehicles (and suggest new ways to do so)

|

Evaluated using the PREVENTION dataset, high prediction accuracy



2. RELATED WORK

Vehicle and lane marking detection and tracking is essential

Consider three levels of analysis
* Input variables
* Methodologies

* Datasets



2. RELATED WORK

* Input variables

Using physical variables : Define the vehicle's relative dynamic relationship with other vehicles and the environment

Includes lateral and longitudinal position (distance),
velocity, acceleration, time difference, heading angle and yaw rote

Most physical variables are obtained fromlcomems and distance sensors

Expect to measure accurately with onboard sensors

lateral and longitudinal acceleration, yaw angle or yaw rate = IMPRACTICAL

Expect V2V communication to solve the problem



2. RELATED WORK

* Input variables

* Aregion of interest (ROI) is created for each vehicle detection

* Contains information about the area around the vehicle
* Appearance features extracted using GooglLeNet pre-trained on ImageNet

* Benefits from not requiring an intermediote detection step



2. RELATED WORK

* Methodologies

Recognize vehicle lane change:
can be evaluated using trajectories estimated by behavioral models

Predicting tra jectories of neighboring vehicles:
more accurate estimates when lane change intent recognition is available

Many previous studies do not consider vehicle-to-vehicle interactions

Other approaches:
based on the use of recurrent neural networks,
including regular LSTMs, LSTM encoder-decoders, and multi-mode architectures

Consequen'l'ly,l'rwo-streom and intention-aware architectures|have been proposed
so far to perform lane change detection and prediction.




2. RELATED WORK

Daotasets

NGSIM I-80 : Dotaset captured from infrastructure using installed cameras

HIGH D, inD, INTERACTION : Cameras on drones

PKU: Collect using a vehicle equipped with 2D-LiDAR (Road lane markings x,
number of road lanes x,
information about the relative position of the autonomous vehicle x)

ApolloScape: Data acquired in an urban environment from a car traveling ot 30 km/h
using four cameras and two laser scanners (Label information x)

PREVENTION:

up to 50 meters around the autonomous vehicle (up to 200 meters in the forward area)

Includes data collected from

three radars, seven cameras, and one LiDAR

, covering




3. PROBLEM FORMULATION

Definition: Lane change prediction as a multi-classification problem

Goal: Determine whether a vehicle changes lanes left or right (LLC, RLC),
stays in a lane, in the context of observations up to a given time N

t-N|

Fig.2. Problem formulation: observation horizon (N), and time to event (TTE). The lane change event is labeled as the frame where the middle of the rear bumper

— — —

Prediction time

aneeneeeeeeee- Obs@rvation horizon (N) ----eeeeeeemeecfooeee

t

Prediction horizon |

(Time To Event)
t+TTE

is located just over the lane markings. This is the criterion established in PREVENTION dataset [15].

Lane Change Event

Context on the left

Context on the right

Lane Change Event : When the center of the rear
bumper is directly over
the lane markings

No Lane Change (NLC): Small lateral movements,
lateral oscillations,
or interrupted lane
change maneuvers
(including unsafe or
aggressive behavior)
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3. PROBLEM FORMULATION

Lane-change classification: when TTE = 0

* Observation horizon contains historical and current information to infer LLC and RLC classes
Lane-change prediction: when TTE > O

* Observation horizon contains more or less information about actual lane change
maneuvers for LLC and RLC classes

For very high TTE values the maneuver may not have started yet

Examine the impact of TTE or forecast horizon and number of observations (N) on the accuracy of
lane change classification and prediction



3. PROBLEM FORMULATION

Fig.3. ROIsizes. From upper row to lower row: x1, x2, x3 and x4. The vehicle
is always centered. Zero-padding is applied when needed.

x4

x3

x2

x1

Vehicles are always centered, with zero padding applied as needed

The prediction relies on visual cues thot are computed from
regions of interest (ROI) extracted from the contour labels
provided in the PREVENTION dotaset

The size of the ROl controls the amount of contextual
information considered in the input data stream

x1 contains information primarily related to vehicle
oppearance

x4 includes a large amount of front and side contextual
information

16



3. PROBLEM FORMULATION

Fig. 4. Example of dense optical flow computation.

Optical flow is low in the region where the vehicle is, while it
is more predominant around it

17



4. VIDEO ACTIVITY RECOGNITION & PREDICTION

Sequences of stacked images or regions of interest
naturally decompose into spatial and temporal components

Spatial part in the form of a traditional area approach:
conveying information about the vehicle itself and its
surrounding context

All regions are created around the vehicle's outline to
ensure the vehicle is always centered in the region of
interest



4. VIDEO ACTIVITY RECOGNITION & PREDICTION

Consider four approaches to recognizing video activity

Disjoint Two-Stream Convolutional Networks
Two-Stream Inflated 3D Convolutional Networks
Spatiotemporal Multiplier Networks

SlowFast Networks



4. VIDEO ACTIVITY RECOGNITION & PREDICTION

Disjoint Two-Stream Convolutional Networks

A two-stream ConvNet architecture

— Spatial Stream ConvNet
3 convl conv2 conv3 conv4 convs fullé
TX7x96 5x5x256 3x3x512 3x3x512 3x3x512 4096
stride2 stnde2 stridel stidel stridel dropout
pool 2x2  pool 2x2
single frame

TX7Tx96 5x5x256 3x3x512 3x3x512 3x3x512 4096
stride2 stride2 stridel stidel stridel dropout
pool 2x2  pool 2x2

optical flow

Fig. 5. Disjoint two-stream architecture for lane change classification and prediction.

Includes 5 convolutional layers and 3 fully connected layers

full7 fulls
2048 3
dropout  softmax

2048 3
dropout  softmax

—

LC score
fusion

Temporal Stream ConvNet I
convl conv2 conv3 convé4 convs fullé fullz fulls

LLC

NLC

RLC
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4. VIDEO ACTIVITY RECOGNITION & PREDICTION

Disjoint Two-Stream Convolutional Networks

Spatial Stream ConvNet

convl conv2 conv3 conv4 conv5 fullé full7 full8
X796 || |5x5x256 || |3x3x512|| |Ix3x512|| | 3x3x512 4096 2048 3
stide2 stride2 stridel stridel stridel dropout dropout softmax
pool 2x2 pool 2x2
single frame
pre-trained using ImageNet Hidden layers Using RelLU

Temporal Stream ConvNet

convl conv2 conv3 conv4 conv5 fulle full7 fullg
7X7x96 | |5x5x256|| 3x3x512|| |3x38x512|| |3x3x512 4096 2048 3
stride2 stride2 stridel stridel stridel dropout dropout softmax
pool 2x2 pool 2x2

optical flow

multi-task learning using UCF-101 and HMDB-51

21



4. VIDEO ACTIVITY RECOGNITION & PREDICTION

Disjoint Two-Stream Convolutional Networks

UCF-101 HMDB-51

ride
horse

push pushup

shoot shoot situp smile

stand swing
baseball exercise




4. VIDEO ACTIVITY RECOGNITION & PREDICTION

Two-Stream Inflated 3D Convolutional Networks

A Notural Approach to Video Modeling: Using 3D
Convolutional Neural Networks

Use spatiotemporal filters to create hierarchical
representations of spatiotemporal data

3D Filter: Iterative copying with image video sequences
Bootstrap from pre-trained ImageNet models

The inputs to the model are short 16-frames sequences

LC action

&

[ 3D ConvNet } [ 3D ConvNet }

Spatial stream Motion stream /:e
1toK 1toK

Fig. 6. Two-stream inflated 3D ConvNet for lane change classification and
prediction.
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4. VIDEO ACTIVITY RECOGNITION & PREDICTION

Spatiotemporal Multiplier Networks

Predicting vehicles that are not changing lanes but have
their turn signals on

Using ResNets as a general architecture for spatial and
temporal streams

Tl = fla)) + F (27 © f(27"), W)

m
X7 F X1 2 ZtZ appearance AZ2 motion AZ9|

|__I:I|_-|);(H %9_| %E—:||O|D:|, Fig.7.

stream.

r

W & dsto| A8ElE 7B XS LIEHH

Appearance Motion
Stream Stream
conv conv

a "
WJ— 1.3 WI—I.J

conv

conv

/2
* ReLU

conv

f(xe, )"

Multiplicative residual gating from the motion stream to the appearance
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4. VIDEO ACTIVITY RECOGNITION & PREDICTION

Slow pathway is T = 16

SlowFast Networks Fast and Slow streams is a = 8.
The ratio of channels of the Slow stream with respect to
the Fast one is 1/8

Low frame rate T

The most successful video motion recognition approaches

Can be considered a two-stream approach, but using the

behavior path directly X /
N -

—> HW HW oT

aT
BC -

v
uonaipaid
juoniuboday

HW aT

Slow streams operate with low frame rates, slow refreshes High frame rate 5

=) Capture semantic information
Fig. 8. SlowFast network for lane change recognition and prediction. The fast

stream is lightweight by using a fraction 5 = 1/8 of channels.

Fast streams are high resolution, fast refresh rate The two pathways are fused by lateral connections
=) capture fast-moving action
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5. EXPERIMENTS

TABLE I TABLE II
MAIN STATS OF THE DATASET. NLC/LLC/RLC: NO/LEFT/RIGHT LANE-CHANGE CLASSIFICATION (T'T'E; = 0) ACCURACY (%)
LANE-CHANGE
ROlsize
NLC | LLC | RLC Method Obs. Horizon x1 X2 x3 x4
# of sequences 3110 | 342 438 20 83.41 | 83.25 ) 85.35 || 84.06
avg. # of frames 50.9 96.8 80.1 Baseline 30 81.96 83.25 82.61 85.19
40 81.80 | 82.45 81.32 || 81.80
20 83.22 | 86.18 || 86.26 || 87.43
The input size of both streams is 112 X 112 Disjoint 30 8355 | 8669 I 8684 |l 86.68
4() 84.97 87.69 89.46 88.79
Training : 85% 30 82.45 | 86.47 | 85.99 || 85.67
. . .10 13D 30 82.13 83.74 83.90 84.06
Validation : 15% 40 82.13 | 83.09 || 81.80 || 82.29
20 83.39 85.03 86.51 86.16
ST 30 84.38 | 84.70 || 8536 || 84.73
C
Important : SlowFast Networks H 33 gg:gg g;:zg gggg g;:gi
SF 30 88.37 89.53 38.24 89.69
40 86.96 89.05 89.53 90.34

Froames ([20 frames(2 seconds)], [30 frames( 3seconds)]), [40frames(4seconds)])
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5. EXPERIMENTS & CONCLUSION

TABLE III
LANE-CHANGE PREDICTION ACCURACY (70). OBSERVATION HORIZON = 20 SPATIOTEMPORAL MULTIPLIER 1%?\%/51111\{/ CONFUSION MATRIX, OH=20),
FRAMES (2 SECONDS) TTE=20, X4
ROI size Tareet elaws
Method TTE <1 ) 3 <4 QOutput class NLC LLC RLC Precision
. 10 | 82.63 | 8295 | 83.44 | 82.79 NLC 476 > 6 91.7%
Baseline |\ o0 1 ¢500 | 81.67 | 82.79 | 83.61 LLC 8 33 - 63.5%
RLC 1 8 50 72.5%
Disjoint | L0 | 8405 | 84.54 1 85.20 1 85.36 Recall 96.2% |71.7% 74.6% || 91.9%
20 | 8520 | 88.82 | 91.02 | 90.92
13D 10 | 81.33 | 83.28 | 83.60 | 83.60 ﬂ
20 | 81.01 | 81.67 | 83.93 | 83.61
ST 10 | 84.70 | 85.60 | 85.20 | 86.51
20 | 86.84 | 90.30 | 91.45 | 91.94 Interrupted lane change maneuvers
SF 10 | 8523|8896 | 8864 | 87.99
20" | 85.27 | 83.31 | 83.61 | 83.61

“Inconclusive results due to GPU memory limitations.

ROl size ﬁ ——— Performance ﬁ
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5. EXPERIMENTS & CONCLUSION

Limitations

Other models mini-batch 128

SlowFast model batch size 8

If limit x =) the slow-fast model would have provided better results



6. HOW TO APPLY

Context on the left

Context ahead

____________________________________ Prediction horizon
(Time To Event) v py
t-N| t t+TT Context on the right
Prediction time Lane Change Event

Fig.2. Problem formulation: observation horizon (N), and time to event (TTE). The lane change event is labeled as the frame where the middle of the rear bumper
is located just over the lane markings. This is the criterion established in PREVENTION dataset [15].

vehicle's rear bumper is in the center of the lane,

it's considered a lane change



6. HOW TO APPLY

Temporal Stream ConvNet

convl conv2 conv3 conv4 convhs fullé full7 fullg

TXTX96 || (SxBx256|| |3x3xB12|| |Ix3x512|| |3x3x512 4096 2048 3
stride2 stride2 stridel stridel stridel dropout dropout softmax
pool 2x2 pool 2x2
optical flow
Extract using optical flow ﬁ .
Appearance Motion
Stream Stream
- . v v
Separately Training Appearance & motion il el

conv

* RelU

conv

2
* ReLU

conv

s o T
f(x5,,)

Fig.7. Multiplicative residual gating from the motion stream to the appearance
stream.



6. HOW TO APPLY

LC action

&

[ 3D|ConvNet } [ 3D|ConvNet }

Spatial stream Motion stream /:e
1toK 1toK

Fig. 6. Two-stream inflated 3D ConvNet for lane change classification and
prediction.

3D RNN model

3D LSTM .etc
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