

2024 SAIL Seminar

An integrated car-following and lane changing vehicle trajectory prediction algorithm based on a deep neural network

Kunsong Shi, Yuankai Wu, Haotian Shi, Yang Zhou^{*}, Bin Ran Physica A: Statistical Mechanics and its Applications (2022.08)

순천향대학교 Al·빅데이터 학과

Senseable Al Lab

홍석준

hongsj@sch.ac.kr

Mathematical formulation of integrated two-dimensional

vehicle trajectory prediction

Integrated two-dimensional vehicle trajectory prediction model

Experiments and results

6

Conclusions

- Development of automated vehicle technology

 \hookrightarrow Prediction \rightarrow Essential module

<Key factor>

Accurate vehicle trajectory prediction \rightarrow Safety and control efficiency of automated driving systems

- Many SOTA control models use surrounding vehicle trajectory information

Inaccurate vehicle trajectory information

→ Unsafety and control inefficiency of automated driving systems

Vehicle trajectory prediction
Car following movement
Lane change movement

- Lane change : vehicle moving from one lane to a nearby lane
- Car following : vehicle continuously following the leading vehicle in the same lane

- Methodology differences Model based methods Data-driven methods -

- Model based methods : Trajectory prediction presumed model from traffic flow theory perspective -
- Data-driven methods : Data-driven fashion for using neural networks -

< Model based methods >

- Great interpretability to explain certain traffic phenomenons

IDM (intelligent driver model)

- Car following prediction model
- Traffic flow simulation

MOBIL

- Lane change prediction model
- Lane-specific macroscopic quantities to

model different lane change traffic condition

However, prediction errors when a model mismatch occurs and driver behavior changes drastically

< Data-driven methods >

- LSTM, RNN, GAN ····
- Lane change, Car following as an independent process
- Widely analyzed traffic flow areas, the dependencies between two movements are significant

Car following movement \rightarrow cause instability in traffic flow

lane change interval variation

Lane change movement \rightarrow car following distance and speed difference

Negatively affects entire traffic flow

- Lane change + Car following
- Integrated vehicle trajectory prediction model (lane change choice + vehicle trajectroy)
 - → Deep long short term memory neural network with a switch structure

< Switch structure >

- Lane change prediction output
 - $\hookrightarrow \mathsf{Used}\ \mathsf{feature}\ \textbf{\rightarrow}\ \mathsf{describe}\ \mathsf{car}\ \mathsf{following}\ \mathsf{relationship}$
- Additional temporal depths \rightarrow TCN

- 9 vehicles
- $N_{i,j}$: *i* (lane), *j* (preceding · following vehicle)
- n: prediction horizon
- m: memory horizon

- Timet~t-n
- Predict future portfolio of SV

< Input data >

- ΔP_t : The set of position information at time t
- V_t : The set of speed information at time t
- A_t : The set of acceleration information at time t
- ΔV_t : The set of speed difference information at time t

 $\Delta P_{t} = [Pt-m, Pt-m+1, ..., Pt]$ $V_{t} = [Vt-m, Vt-m+1, ..., Vt]$ $A_{t} = [At-m, At-m+1, ..., At]$ $\Delta V_{t} = [\Delta Vt-m, \Delta Vt-m+1, ..., \Delta Vt]$

 $S_t = \left[\Delta P_t, V_t, A_t, \Delta V_t \right]$

$$\overrightarrow{\phi}_{t} = H(\Delta \mathbb{P}_{t}, \mathbb{V}_{t}, \Delta \mathbb{V}_{t}, \mathbb{A}_{t})$$

- H: lane change prediction function
- {-1, 0, 1} | LLC : -1 / LK : 0 / RLC : 1

$$Y_t = G([\overrightarrow{\phi}_t S_t])$$

- G: Longitudinal trajectory prediction function
- Predicted position of the vehicle at time t

3. Integrated two-dimensional vehicle trajectory prediction model a. Model structure

TCN

- feature extraction (time domain extraction)
- trajectory features

c. Lane change prediction module

Lane change prediction module

- Bi-LSTM, FC layer
- Lane change prediction output
- Combine results with other parts of the model

d. Vehicle trajectory encoder

Vehicle trajectory encoder

- Bi-LSTM, Attention, ELU
- Extract more sophisticated trajectory features

e. Vehicle trajectory decoder

Vehicle trajectory decoder

- Bi-LSTM, Attention, ELU, FC layer
- Lane change + Vehicle trajectory
- Predict the future trajectory

3. Integrated two-dimensional vehicle trajectory prediction model f. Model training

4. Experiments and results a. Data description

- NGSIM Dataset -
- Train : 2250 / Test : 250 -

b. Quantitative evaluation metrics

- MAE
- RMSE
- F1 score
- Precision
- Recall
- Accuracy

$$MAE = \frac{\sum_{i=0}^{K} |Y_i - \widehat{Y}_i|}{K}$$

$$RMSE = \sqrt{\frac{\sum_{i=0}^{K} (Y_i - \widehat{Y}_i)^2}{K}}$$

 $F1 = 2 \times \frac{precision \times recall}{precision + recall}$

c. Model prediction performance comparison

woder general performance experiment	t Tesuit.			
Model	MAE	RMSE	Accuracy	F1
ITPM	2.11	5.67	0.8789	0.8372
ITPM without TCN layer	2.79	6.23	0.8220	0.8011
ITPM without attention layer	2.63	6.01	0.8720	0.8241
ITPM BiLSTM feature extractor	2.59	6.14	0.8512	0.8193
Baseline BiLSTM [46]	3.67	8.36	N/A	N/A
Baseline LSTM [45]	4.21	9.37	N/A	N/A
Baseline IDM+MOBIL [14,19]	6.23	12.72	0.64879	0.6331
ConvLSTM [47]	3.21	6.77	N/A	N/A

※ ITPM (Integrated Trajectory Prediction Model)

Model general performance experiment result

- TCN O > TCN X

- Attention layer O > Attention layer X -
- TCN > Bi-LSTM
- ITPM > IDM + MOBIL -

c. Model prediction performance comparison

1	Model prediction enciency experiment result. * (PM (integrated trajectory Prediction Model)				
	Model	Parameters	Inference time		
	ITPM	861084	21.7 ms		
	ITPM without TCN layer	770784	17.8 ms		
	ITPM BiLSTM feature extractor	832198	22.8 ms		
	ITPM without attention layer	843751	19.5 ms		
	Baseline BiLSTM [46]	323756	8.7 ms		
	Baseline LSTM [45]	157480	3.7 ms		
	Baseline IDM+MOBIL [14,19]	N/A	N/A		
	ConvLSTM [47]	467338	14.6 ms		

Madel prediction officiency experiment result _____ ITDM (Integrated Trajectory Prediction Medel)

- Complexity of switch structure \rightarrow more parameter and inference time
- Less than 30 ms _

→ Still adequate for automated driving and other intelligent system transportation applications

c. Model prediction performance comparison

- Memory horizon, prediction horizon : 3s
- First · second leading = preceding vehicle
- Change in distance over time
- ITPM > Bi-LSTM

c. Model prediction performance comparison

- Change in speed over time
- Small and big fluctuations
- ITPM > Bi-LSTM
- Smoother predictions

d. Model performance sensitivity analysis

- Memory horizon ↑
- Prediction horizon \downarrow
- Performance degradation when increased

by more than prediction horizon 5s

5. Conclusions

5. Conclusion

Lane change Car following Two dimensional Trajectory prediction model

TCN + Bi-LSTM + Attention mechanism = switch structure model

- 1. Model comparison results \rightarrow Better performance
- 2. Prediction / memory horizon sensitivity analysis → Give practitioners guidance

Effective short term and long term trajectory prediction model

6. How to Apply

6. How to Apply

- 입력 변수에 대한 수식 참조
- 모델 프레임 워크
- 교통 모델에 대한 비교군
- Car following / Lane Keeping

