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a b s t r a c t

Vehicle trajectory prediction is essential for the operation safety and control efficiency
of automated driving. Prevailing studies predict car following and lane change processes
in a separate manner, ignoring the dependencies of these two behaviors. To remedy this
issue, this paper proposes an integrated deep learning-based two-dimension trajectory
prediction model that can predict combined behaviors. Specifically, we designed a switch
neural network structure based on the attention mechanism, bi-directional long-short
term memory (BiLSTM) and Temporal convolution neural network (TCN) to mimic and
predict the joint behaviors. Experiments are conducted based on the Next Generation
Simulation (NGSIM) dataset to validate the effectiveness of our proposed model. As
results indicate, our proposed model outperforms the state-of-art trajectory prediction
models and can provide accurate short-term and long-term predictions.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

With fast development of automated vehicle technology, prediction serve as an essential module for automated
ehicles. Among prediction targets, accurate vehicle trajectory prediction is a key factor related to the safety and control
fficiency of automated driving systems [1]. Many state-of-the-art control models use surrounding vehicle trajectory
nformation to make key decisions and control automated vehicles [2–9]. Inaccurate trajectory information can cause
hese control methods to become inefficient and unsafe. Therefore, accurate vehicle trajectory prediction is critical to the
fficiency and safety of autonomous vehicles.
Due to the importance, many existing studies have paid attention to vehicle trajectory prediction. Among those

ethods, there are two main types of vehicle movements of interest: lane change movements [10,11] and car following
ovements [12,13]. The lane change movement is defined as the vehicle moving from one lane to a nearby lane, and

he car-following movement is defined as the vehicle continuously following the leading vehicle in the same lane.
urthermore, based on methodology differences, these research can be further divided into two categories: model based
ethods, and data-driven methods. Model based vehicle trajectory prediction methods predict vehicle movement by
presumed model, usually from traffic flow theory perspective, whereas, the data-driven method predicts vehicle
ovement in a data-driven fashion, for example using neural networks. The model based prediction methods have great
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nterpretability to explain certain traffic phenomenons. For example, for car following models, Treiber et al. [14] presented
he intelligent driver model (IDM), which relates to using the desired spacing as a parameter in the car-following model.
i et al. [15] proposed a systematic non linear car-following model that can reduce observed traffic oscillation propagation
henomenon. Chen et al. [16] developed an asymmetric behavior car-following model that is developed based on a
tatistical analysis of driver behaviors. For lane change models, Gipps et al. [17] presented a classical rule based model
hat was based on a series of specific lane change rules. Hidas et al. [18] proposed an improved rule-based lane change
odel by categorizing the lane change process into three different categories, including forced, cooperative, and free lane
hange. Kesting et al. [19] developed a lane change model for the IDM car-following model, which is called the MOBIL
odel. Laval et al. [20] presented a rule based lane change model using lane-specific macroscopic quantities to model
ifferent lane change traffic conditions. However, these model based methods can also introduce prediction errors when
model mismatch occurs, and driver behavior changes drastically.
With recent developments in deep learning, data-driven methods have been favored increasingly, which predict

rajectories using only data itself. These methods can circumvent model mismatch caused by assuming a specific model
nd better capture the temporal-varying behaviors by the extraordinary ability of deep neural networks to learn patterns
nd features from a large amount of data. Many studies [21–23] have demonstrated promising results utilizing data-driven
ased methods compared to the traditional model based methods. For car following model, Zhou et al. [24] developed a
ata-driven car-following model that can effectively capture traffic oscillation in the trajectory using a recurrent neural
etwork. Zhang et al. [25] created a data-driven car-following model using deep long-short term memory(LSTM) that
chieved a good prediction performance. Zhao et al. [26] presented generative adversarial network based vehicle trajectory
rediction that can capture the behavior of vehicle drivers and achieved great prediction accuracy result. Ma et al. [27]
resented a sequence to sequence based data-driven car-following model that can accurately capture heterogeneous
riving behaviors. On the other hand, for lane changing models, Xie et al. [28] created a data-driven lane change trajectory
rediction model using LSTM, whose results suggest to be a successful LSTM application. Based on that, by introducing two
ypes of attention mechanisms, Scheel et al. [29] achieves better prediction accuracy compared with baseline LSTMmodels.
iffered from the recurrent neural network(RNN)-type methods, Gao et al. [30] proposed a new grouped convolution
eural network for prediction lane changing behavior.
Though applied successfully, above mentioned data-driven models largely treat lane change and car following as an

ndependent process, whereas, in widely analyzed traffic flow areas, the dependencies between two movements are
ignificant. On the one hand, the car-following movement can cause instability in the traffic flow, which may affect
iscretionary lane change. Studies have discovered that different car-following combinations can cause interference in
he stability of traffic flow [31]. This instability can cause variations in the possible gap choice of the discretionary lane
hange. On the other hand, the lane change movement can cause a sudden change in the car following distance and speed
ifference, which negatively affects the entire traffic flow. Several studies have shown that the lane change movement is
he major source of traffic oscillations [32], and causes a ‘phantom’ congestion [33] on freeways. Moreover, the study [34]
as discovered two transition periods in the lane change process, the anticipation period and relaxation period, which
an directly impact the proceeding vehicle trajectory and the immediate following vehicle trajectory.
To incorporate the inter-dependencies mentioned above, an integrated vehicle trajectory prediction model is needed.

owever, difficulties arise since the model needs to not only focus on the continuous longitudinal movement on the
urrent lane but also the discrete lane change choice on the adjacent lanes. Further, the two processes are nested due to
he dependencies mentioned above. Hence, an integrated specially designed neural network, which is capable of describing
he process and conveying the physical meanings, is more desired. To address the problems mentioned above, we propose
deep learning based integrated two dimensional trajectory prediction model, which is a unified model, to capture the

nter-dependency and while exploiting the merits of data-driven methods. Specifically, we designed a deep long short
erm memory neural network with a switch structure. The switch structure is a module that can generate a lane change
rediction output which then can be used directly as a feature to describe the corresponding change of proceeding-
ollowing car following relationship. Furthermore, a temporal convolution neural network(TCN) [35] layer is used in our
odel to further give the model additional temporal depths for better prediction based on previous LSTM algorithms.
dditionally, the study focus on discretionary lane change because of the availability of data from all considered lanes.
The rest of the paper is organized as below: Section 2 gives the mathematical problem formulation of our problem;

ection 3 gives the structure of our specifically designed neural network structure, and Section 4 delivers the experiment
nd result. Last but not least, Section 5 gives a conclusion and points out the future work.

. Mathematical formulation of integrated two-dimensional vehicle trajectory prediction

Vehicle trajectory is described by a Cartesian Coordinate denoted by X,Y, which represents the position of the target
ehicle. Our prediction algorithm mainly focused on predicting the car following trajectories longitudinally in Y -axis, and
eanwhile predicting the lane change decision described by X-axis. Specifically, at each time point t , we aim to predict

the future portfolio of our target vehicle from time t to t + n utilizing the historical information of the target vehicle and
the surrounding vehicles from time t to t−m. n andm are the prediction horizon and the memory horizon, respectively. To
systematically consider the surrounding impact upon the target vehicle, all kinematic states of nine vehicles, including the
target vehicle and eight surrounding vehicles, are considered shown as Fig. 1. In Fig. 1, N and N denote the preceding
2,1 2,3
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Fig. 1. Schematic diagram of the vehicle trajectory prediction scenario.

vehicle and the following vehicle on the current lane, respectively. N3,1, N3,2, N3,3 and N1,1, N1,2, N1,3 represents vehicles
ranked from downstream to upstream on the right and left lane.

To mathematically describe our algorithm, we define the input features for the model as: ∆Pt = [Pt−m, Pt−m+1, . . . , Pt ],
∆Pt ∈ R6×3×m, whose element is pi,j,t , where i denote lane number and j denotes vehicle number and pi,j,t = (xi,j,t , yi,j,t ),
is the local coordinates of vehicle Ni,j at time t; Vt = [Vt−m, Vt−m+1, . . . , Vt ], Vt ∈ R3×3×m, whose element is vi,j,t ,where i
denote to lane number and j denotes the vehicle number, is the speed of vehicle Ni,j at time t; At = [At−m, At−m+1, . . . , At ],
At ∈ R3×3×m, whose element is ai,j,t , where i denote to lane number and j denotes the vehicle number, is the acceleration
of vehicle Ni,j at time t; ∆Vt = [∆Vt−m, ∆Vt−m+1...∆Vt ], ∆Vt ∈ R3×3×m, whose element ∆vt is the speed difference
between the current vehicle and the preceding vehicle.

In the coordinate system, the current position of the subject vehicle at time t is defined as the referenced origin. The
output of our model at time point t is defined as the predicted longitudinal trajectory Yt = [P2+φt ,2,t+1, P2+φt ,2,t+2, . . . ,

P2+φt ,2,t+n], Yt ∈ R2×n, where P2+φt ,2,t = (x2+φt ,2,t , y2+φt ,2,t ) and predicted lane change status φt ∈ {−1, 0, 1}, where −1
is left lane change, 0 is no lane change, 1 is right lane change. The integrated trajectory prediction model is formulated
mathematically as:

−→
φ t = H(∆Pt ,Vt , ∆Vt ,At ), (1)

∆vt = v2+φt ,2,t − v2+φt ,1,t (2)

Yt = G([
−→
φ t St ]), (3)

where St = [∆Pt ,Vt , ∆Vt ,At ] and
−→
φ t is the actual vector representation of the predicted φt in the model φt ∈ {−1, 0, 1},

where −1 is left lane change, 0 is no lane change, 1 is right lane change.
Furthermore, when ∆t is small enough, the above vehicle longitudinal kinematics also follows the uniform acceleration

motion over each ∆t . Kinematic equations among the inputs pi,j,t , vi,j,t , and ai,j,t are as follow:

vi,j,t = vi,j,t−1 + ai,j,t∆t (4)

pi,j,t = pi,j,t−1 + vi,j,t∆t +
1
2
ai,j,t∆t2 (5)

By the above mathematical formulation, a specially designed deep neural network is given in the next section.

3. Integrated two-dimensional vehicle trajectory prediction model

In this section, the structure of the integrated two-dimensional vehicle trajectory prediction model is given in detail.
Then the key modules and layers are presented.

3.1. Model structure

To build an integrated trajectory prediction model that can accurately predict both lane change and car-following
trajectories, a switch structure is developed. The general architecture of the model is shown in Fig. 2. From Fig. 2, the
input feed directly into a TCN layer, which is the input feature extractor. The purpose of this TCN layer is to extract
temporal domain features. Additionally, this TCN layer can give the model additional depth to the entire model, which
can improve prediction performance for deep learning models. Then the extracted features feed into two separated parts
of the model, the lane change prediction module, which is represented as the H function in the mathematical formulation
3
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Fig. 2. General model structure of integrated trajectory prediction model.

and the vehicle trajectory encoder. The lane change prediction module will output a lane change prediction output
−→
φ t

hat aims to switch between predicting car-following and lane change trajectories, which also creates a unique asymmetric
tructure. The vehicle trajectory encoder will further refine the extracted features from the TCN layer. Then the output
f these modules is concatenated together using matrix concatenation. Finally, the vehicle trajectory decoder, which is
epresented as the G function in the mathematical formulation, will generate the vehicle trajectory prediction output Yt
ased on the concatenated values. The detailed structure of each module and the TCN layer is discussed in the following
aragraph.
As shown in Fig. 3, the input historical trajectory data is directly input to TCN layer to extract temporal domain features

rom the input historical trajectory data. We selected TCN as the main feature extractor, which shows better capability
n generalized temporal feature extractor compared with other methods such as BiLSM, as suggested by studies [36,37].
he extracted trajectory features feed into two sections of the model the lane change prediction module and the vehicle
rajectory encoder. The lane change prediction module used the extracted features from the TCN layer as inputs and a fully
onnected layer, a BiLSTM, another fully connected layer, and a softmax layer to generate a lane change prediction

−→
φ t .

he output of this is split into two directions. One direction goes into a special fully connect layer to output a lane change
rediction. The fully connected layer aims to use the calculated probability from the softmax layer and output a predicted
ane change label to indicate whether the vehicle is changing lanes or not. The other direction will concatenate together
ith the output of the other section of the model. For the other section, the output of the TCN layer feeds directly into
he vehicle trajectory encoder built using a BiLSTM layer and an attention layer. Between the BiLSTM and the attention
ayer, there is a normalization layer to enhance the prediction performance. The normalization layer of this framework
s the layer norm method from [38]. This type of normalization layers can be used to stabilize the training process of
ecurrent neural networks like BiLSTM, which would greatly improve the prediction performance of model. In addition,
sing a layer normalization layer can also reduce the total training time by improving the training convergence rate.
hen, the attention layer’s output matrix is concatenated together with the lane change prediction result using matrix
oncatenation, which will go into the vehicle trajectory decoder to generate the predicted future trajectories Yt of the
urrent vehicle. The matrix concatenation process is described as follows:
The output from the softmax layer is a feature matrix A, the output of the vehicle trajectory encoder is a feature matrix

, and the feature matrix C is the output of the concatenation. The detailed concatenation process is given as below:

A =

⎡⎢⎢⎣
a11 a12 a13
a21 a22 a23
...

...
...

ad1 ad2 ad3

⎤⎥⎥⎦ (6)

B =

⎡⎢⎢⎣
b11 b12 b13 . . . b1n
b21 b22 b23 . . . b2n
...

...
...

. . .
...

⎤⎥⎥⎦ (7)
bd1 bd2 bd3 . . . bdn
4
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Fig. 3. Detailed model structure of our integrated trajectory prediction model.

AconcatB = C =

⎡⎢⎢⎣
a11 a12 a13 b11 . . . b1n
a21 a22 a23 b11 . . . b2n
...

...
...

...
. . .

...

ad1 ad2 ad3 bd1 . . . bdn

⎤⎥⎥⎦ (8)

The vehicle trajectory decoder is built using a BiLSTM layer, an ELU activation layer, a normalization layer, and a fully
connected output layer. We choose ELU activation for the vehicle trajectory encoder and the decoder in the model
because the ELU activation function is a better activation function for learning sequence based data and provides better
generalization abilities that will be critical for encoding and decoding vehicle trajectory features. The following formula
represents the ELU activation function:

ELU (x) = exp (x)− 1 (9)

The parameters and the detailed input and output design of the layers are designed using empirical trials and tuning.
The detailed input and output size for each layer in the model is described in Table 1.

3.2. Temporal convolution neural network layer

In order to successfully use convolutions in sequence-based learning tasks, we exploit the TCN model from
WaveNet [35], which uses a unique convolution method called dilated casual convolution. For a convolution operation,
the receptive field indicates the length of the historical information that can be utilized for the output of the convolution.
Thus, a large receptive field can increase the amount of historical information that can be utilized for prediction, which
tends to lead to better prediction performance of time series tasks. The dilated convolution use dilation factors to increase
the size of the receptive field. Stacking this dilated convolution with a different number of dilation factors will create a
special structure that will significantly increase the receptive field of the convolution model. Given a 1-D input sequence:
5
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Table 1
Input–output size for each layers in the integrated two dimensional trajectory prediction model.
Layers Input size Output size

TCN 45 20
Lane change prediction module (fully connected layer) 20 40
Lane change prediction module (BiLSTM) 40 40
Lane change prediction module (fully connected layer) 40 3
Lane change prediction module (softmax layer) 3 1
Lane change prediction module (fully connected output layer) 3 1
Vehicle trajectory encoder (BiLSTM) 20 20
Vehicle trajectory encoder (attention layer) 20 20
Vehicle trajectory encoder (ELU layer) 20 20
Vehicle trajectory encoder (layer norm) 20 20
Vehicle trajectory decoder (fully connected layer) 23 80
Vehicle trajectory decoder (BiLSTM) 80 80
Vehicle trajectory decoder (fully connected layer) 80 Output size

x ∈ Rn, and a kernel w: {0, 1, . . . , k− 1} → R, the 1D dilated causal convolution (x ∗d w) is

(x ∗d w) =
k−1∑
i=0

w(i)x(s− id), (10)

here k and d are the kernel size and the dilation factor respectively. With a large dilation factor d, larger receptive fields
can be achieved by stacking multiple layers of TCN.

To properly extract temporal domain features for accurate vehicle trajectory prediction, only relying on dilated
convolution layers is not sufficient. Thus, we added additional activation, normalization, pooling, and dropout layers.
Also, to further improve the prediction performance, an additional residual connection is added to the layer.

The activation layer adds essential nonlinearity to the TCN model, which will help the TCN model to learn critical
nonlinear relationships and patterns from the input data. We used Leaky ReLU as an activation function for our TCN
layer because our inputs are the relative positions that are often negative values, which can cause regular ReLU activation
problems in training. Leaky ReLU can reduce these problems for negative inputs. The following formula defines the leaky
ReLU activation function:

LeakeyReLU(x) =

⎧⎨⎩
ax x<0
x x≥0
,

(11)

here a is the slope parameter for the negative section of the Leaky ReLU activation function. a should be a very small
alue.
The dilated convolution layers will output a feature map from the input. This feature map often contains many features

hat are not necessarily significant and can cause bias and errors in prediction. Therefore, a downsampling technique is
pplied to the feature map, which is called pooling. Max pooling is used in our TCN layer because average pooling will
enerate a feature map that could make distinguishing between car-following and lane changing maneuvers more difficult
or the model.

Normalization layers are a common method to improve the prediction performance of deep learning models. One of
he most common normalization layers is batch normalization which was developed by Google in 2015 [39]. The batch
ormalization layer can standardize the input to each deep learning layer for each mini-batch which can stabilize the
raining process and improve the model prediction performance. Therefore, we implemented batch normalization layers
n between the convolution layers inside the TCN layer.

The residual connection comes from one of the most classic CNN based deep learning models called ResNet [40].
dding this skip connection can preserve the original gradient and help model training so that the gradient does not
anish during the training process of a deep neural network. This method has been proven to improve the training and
eneral performance of deep CNNs. Thus, a residual connection is added to the TCN layer. The following formula defines
he skip connection.

o = Activation(F (Xt)+ Xt ). (12)

The dropout layer was developed by Srivastava et al. [41] as a simple solution to reduce the overfitting problems of
neural networks. Dropout layers are added to the TCN layer to reduce the overfitting problem learned by the model. There
is a drop layer for every convolution layer in the TCN layer.

3.3. LSTM

LSTM is an improved version of RNN. LSTM has been used in many time series related fields due to its ability to learn

long term dependencies extremely well. For every time step n, the LSTM cell has an input xn, a output hn and a cell state

6
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Fig. 4. The general structure of a BiLSTM layer.

output Cn. The LSTM cell can update the output based on the cell state input Cn−1, the hidden state input hn−1, and the
nput xn. The LSTM cell uses three gates to control the information in the cell state, including the forget gate fn, the input
ate in, and the output gate on. These three gates give the LSTM cells ability to learn long term dependency. The three
ates control what information should pass through the cells and what information should be updated through the layer.
he calculation process of the LSTM cell and the outputs are shown in the following equations:

fn = σg (Wf xn + Uf hn−1 + bf ),
in = σg (Wixn + Uihn−1 + bi),

on = σg (Woxn + Uohn−1 + bo),
Cn = fn ⊙ Cn−1 + in ⊙ tanh(WCxn + UChn−1 + bC ),

hn = on ⊙ tanh(Cn),

(13)

where n represents the input to the LSTM cell for the model. Wf , Wi, Wo, and WC are weight vectors for each gate.
Uf ,Ui, Uo, and UC are weight vectors associated with the previous output vector for each gate and cell state output. ⊙ is
a dot product operation between vectors. The tanh is the hyperbolic tangent function. σg represents the gate activation
function, and the sigmoid function is used in our study.

3.4. BiLSTM

Bidirectional LSTM(BiLSTM) is one of the successful variants of improved LSTM [42]. Compared to the traditional LSTM,
BiLSTM has the ability to learn relationships from the input from both the forward direction and the backward direction.
As shown in Fig. 4, the structure of BiLSTM is created using LSTM cells from two layers, the forward and backward layers.
Therein, the output of the forward layer can be calculated using the input information in a positive (forward) direction
from time step t − 1 to t , and the output of the backward layer is obtained using the reversed input information from
time step t+1 to t . To be noted that the backward and forward layers do not share parameters. The BiLSTM contains two
sets of training parameters; one set governs how information flows forward, the other controls how information flows
backward. This unique bidirectional structure of BiLSTM can effectively learn both forward and backward dependencies
and pass through more useful input information [43]. With this design, BiLSTM can process sequence data and learn
temporal domain features using both the forward and backward layers, which indicates that more information can be
used for prediction and will lead to improved prediction performance. The output yn of BiLSTM at n is calculated using
the output of the forward LSTM layer

−→
hn and backward LSTM layer output

←−
hn , as in the equation below:

yn = [
−→
hn ⊕

←−
hn ], (14)

where ⊕ is a type of combination function that combines
−→
hn and

←−
hn . Several functions can be used as ⊕, including sum,

average, concatenate, and multiplication. In our study, we select the concatenate function as the combination function,
because we want all the features extracted by the LSTMs to be available for prediction.

3.5. Attention mechanism

To further improve the prediction performance of the BiLSTM/LSTM model, the attention mechanism is added to the
model. Fig. 5 shows our attention mechanism. For a BiLSTM/LSTM model, the final output is often a context vector

representing all the input’s important features. This would be challenging for a single BiLSTM/LSTM cell to capture all

7
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Fig. 5. The general structure of our attention layer.

the required temporal information when the input sequence is very long. The attention mechanism helps the model
capture temporal features from a long input sequence by generating the output vectors from all BiLSTM/LSTM cells in
a layer instead of relying on the last cell. The attention mechanism also selects the most critical output features from
those BiLSTM/LSTM output using learned weights based on the importance of these features learned from the training
data using a feed-forward network. The output result of the attention layers is a weighted sum of the BiLSTM/LSTM cells’
output using the learned weights. Such an attention layer can highlight the importance of different outputs, potentially
represent a particular feature, and consider more contextual impacts to improve prediction performance. The following
functions are used to show the calculation process of the attention mechanism used in our study:

cn =
N∑
i=0

an,i · yn,

an,i =
exp (β (yi))∑N
k=0 exp (β (yk))

,

β (yi) = Va
T tanh(Wayi),

(15)

here cn is the output vector. N is the total length of the input data. yn is the output of the last BiLSTM layer at position
. an,i is the alignment model that assigns a weight at each location i for the BiLSTM output at position i. The alignment

score is calculated using the β function. The β function is a score function that is learned from a particular feed-forward
network that only contains one hidden layer and is trained together with all the other parts of the model. Va and Wa are
earned weights from the alignment model. tanh is the hyperbolic tangent function.

.6. Model training

As our model contains two parts, the training loss for our model also contains two parts. The first part is the mean
quare error(MSE) loss which is used for the trajectory prediction output. The second part is a categorical cross-entropy
oss. The following formula shows how our combined loss is calculated:

L =
1
n

n∑
i=0

(Yi − Ŷi)2 −
2∑

k=0

yklog(ŷk), (16)

here Yi is the actual position of the vehicle and Ŷi is the predicted position. yk is the actual movement type of the
ehicle and ŷk is the predicted movement type. n is the prediction horizon and maximum value for k is 2 because we
ave 3 movement types.

. Experiments and results

In this section, the training data, the evaluation metrics, the experiment design, and the experiment results are
resented in details. The experiments are conducted using a computer with RTX 3090 GPU and a Ryzen 3700x CPU and the
odels are developed by python and the Pytorch deep learning framework. The experiment contains three sections. The

irst section gives the model training process which determines the hyper-parameters . The second experiment conducts
sensitivity analysis under different prediction/memory horizons. For the third experiment, we make a systematic

omparison with state of art vehicle trajectory prediction methods.
8
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Fig. 6. Sample trajectory and layout of the NGSIM dataset.

4.1. Data description

Data-driven based vehicle trajectory prediction models rely on a large amount of training data. Thus, our integrated
two dimensional trajectory prediction model requires many real world vehicle trajectory data to train and test the model
properly. We used one of the most popular public available real world vehicle trajectory dataset, the Next Generation
Simulation (NGSIM) dataset [44] to train and test our model. The data used in the experiment is collected from US Highway
101 (US-101) and Interstate 80 Freeway (I-80), in a 10 Hz frequency. The NGSIM dataset contains trajectory data recorded
from over 3000 vehicles. 2250 trajectories are used to train the model, and 250 are used to test the model. The detailed
layout of the dataset is shown in Fig. 6(a) and sample trajectories are shown in Fig. 6(b).

4.2. Quantitative evaluation metrics

To quantitatively evaluate the prediction performance of our model, the following Mean absolute error (MAE),
Root-mean-square error (RMSE) are selected as car following trajectories evaluation metrics as below:

MAE =
∑K

i=0 |Yi − Ŷi|

K
, (17)

RMSE =

√∑K
i=0 (Yi − Ŷi)

2

K
, (18)

here Yi is the groundtruth position of the vehicle; Ŷi is the predicted output position from the model and K is the total
umber of predictions.
Further, we also evaluated the lane change prediction accuracy by using F1 score, whose detailed definitions and

quations are given as below:
ccuracy: The accuracy is calculated by using the amount of true positive and true negative predicted by the model
ivided by the total number of test samples.
recision: Precision is defined as the number of true positives predicted by the model divided by the number of test
amples. For each of the labels in the data, an individual precision score needs to be calculated.
ecall: Recall is defined as the number of true positives predicted by the model divided by the number of true positives
lus false negatives predicted by the model. An individual recall score is also calculated for each of the labels in the data.
1 score: F1 score is a ratio created using precision and recall. It is used to show the balance of precision and recall for a
odel, because sometimes high precision or high recall does not translate to good prediction performance. The F1 score

s defined from the following formula:

F1 = 2×
precision× recall

. (19)

precision+ recall

9
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Fig. 7. Model training experiment result.

Table 2
Model parameters for the integrated two dimensional
trajectory prediction model.
Parameters Values

Learning rate 0.01
Learning rate decay factor 0.0005
Epoch 300
Batch size 64
Optimizer Adam

4.3. Model training

In this model training experiment, the model hyper-parameters, including learning rate, training epoch, and batch size,
re determined by trying different values. Specifically, we use RMSE as a metric to select the best hyper-parameters. The
etails of training are as illustrated by Fig. 7. Fig. 7(a) shows how the model testing RMSE changes with different batch
izes. The effect of different learning rates and Epochs on the RMSE is shown in Fig. 7(b) and Fig. 7(c), respectively. The
elected hyperparameters from the experiment are shown in Table 2. As we can find from Fig. 7(d), the training process
s smooth. The training loss decreases significantly for the first 50 epochs. Then the loss decrease begins to slow down
nd finally converges at the end of the training process. This result manifests that the model is trained in a good manner.
he total training time for this model is around 35 min.
10
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Table 3
Model general performance experiment result.
Model MAE RMSE Accuracy F1

ITPM 2.11 5.67 0.8789 0.8372
ITPM without TCN layer 2.79 6.23 0.8220 0.8011
ITPM without attention layer 2.63 6.01 0.8720 0.8241
ITPM BiLSTM feature extractor 2.59 6.14 0.8512 0.8193
Baseline BiLSTM [46] 3.67 8.36 N/A N/A
Baseline LSTM [45] 4.21 9.37 N/A N/A
Baseline IDM+MOBIL [14,19] 6.23 12.72 0.64879 0.6331
ConvLSTM [47] 3.21 6.77 N/A N/A

Table 4
Model prediction efficiency experiment result.
Model Parameters Inference time

ITPM 861084 21.7 ms
ITPM without TCN layer 770784 17.8 ms
ITPM BiLSTM feature extractor 832198 22.8 ms
ITPM without attention layer 843751 19.5 ms
Baseline BiLSTM [46] 323756 8.7 ms
Baseline LSTM [45] 157480 3.7 ms
Baseline IDM+MOBIL [14,19] N/A N/A
ConvLSTM [47] 467338 14.6 ms

4.4. Model prediction performance comparison

In this section, experiments are conducted to compare the prediction performance of our integrated two dimensional
rajectory prediction model with several baseline methods to validate the effectiveness of our model. We selected the
OBIL [19] model as a baseline method because it is a classical lane change model representing the model-based method
iscussed in the introduction section. The LSTM [45] and the BiLSTM [46] models are baselines representing the data-
riven based methods. Additionally, we added the ConvLSTM [47] method to compare our model with an advanced
ata-driven method. The integrated trajectory prediction model and the baseline models are quantitatively evaluated
sing the evaluation metrics discussed in the previous section. The memory horizon and prediction horizon for this
xperiment is 5s for both models. The quantitative experiment result for this experiment is shown in Table 3.
First, the MAE of the integrated trajectory prediction model is at 2.11 ft, and the RMSE is 5.67 ft. To test the usefulness

f TCN layer, we conduct a comparison with the model without TCN layer, whose MAE and RSME are 2.79 ft and 6.23
t, respectively, which suggests the usefulness of TCN. In addition, we test a case which applies BiLSTM as the feature
xtractor, whose MAE is 2.59ft and RMSE is 6.14ft. This result shows the advantage of using TCN as the feature extractor.
y comparing the result with the model without the attention layer, whose MAE and RMSE are 2.63ft and 6.01ft, we can
ind the effectiveness of the attention layer. Further, the BiLSTM model gives MAE and RMSE as 3.67 ft and 8.36 ft, which
s significantly larger than that of our method. This validates the advantages of our switch structure. The MAE and RMSE
or the LSTM model are 4.21ft and 9.37ft. Therefore, by comparing BiLSTM with LSTM, we can find that the effectiveness
f the bidirectional structure on capturing the trajectory time series feature. Moreover, traditional model-based prediction
ethod, IDM+MOBIL, whose MAE and RMSE are 6.23 ft and 12.72 ft, suggests the weakness of traditional model-based
rediction accuracy. In addition, convLSTM is a relatively advanced data driven method, and its MAE and RMSE are 3.21 ft
nd 6.77ft, which demonstrate the effectiveness of our model comparatively. For the lane change prediction performance,
ur model achieved a better prediction accuracy, 0.8789, compared with that of the IDM+MOBIL model, which is 0.6879.
he F1 score also gives a similar conclusion.
The prediction efficiency of the models is of interest in our study. To compare it, we recorded the parameters required

nd inference time of each model, which is shown in Table 4. From the result, it is clear that our model uses 861084
arameters and 21.7 ms inference time. Compared with the LSTM and BiLSTM models, our model uses more parameters
nd inference time as expected by the additional complexity of our switch structure. Whereas, the prediction efficiency
f our model is still adequate for automated driving and other intelligent system transportation applications since the
nference time is significantly less than 30 ms.

To qualitatively compare the BiLSTM car-following model with our model. A special case before and after lane change
s selected as an illustration. The memory horizon and prediction horizon for this experiment is 3s for both models. The
peed difference and position from this experiment are shown in Figs. 8(a) and 8(b). As indicated by Figs. 8(a) and 8(b),
ur model performs better than the car-following model in both position and speed difference accuracy. As shown in
ig. 8(a), the green line, which is the predicted position from our model, is closer to the actual position of the vehicle
ompared to the BiLSTM model, which is shown as the red line in the figure, for both before the lane change and after
he lane change. It is clear that from Fig. 8(b), the predicted speed difference is which is the blue line is closer to the
lack line, which is the actual speed difference compared to the red line, which is the predicted speed difference from
11
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Fig. 8. Comparison with BiLSTM car-following model experiment result.

Fig. 9. Model performance with different prediction/memory horizon.

the BiLSTM model for both sections of the experiment. We can also find that our model produces relatively smoother
predictions than BiLSTM in terms of the speed difference.

4.5. Model performance sensitivity analysis

To further investigate the performance of our proposed model, we conduct a sensitivity analysis with different memory
horizons m and prediction horizons n. The detailed RMSE and MAE are given in Figs. 9(a) and 9(b). As shown in Figs. 9(a)
and 9(b), the MAE and RMSE errors for the 1s prediction/memory horizon are both less than 1ft, and the MAE and RMSE
for the 3s prediction/memory horizon are both less than 10ft, which suggests the prediction excellence for the short-
term prediction under different memory horizon. Further, from the short-term prediction, we can find that, as long as
the memory horizon is larger than or equals to 3 s, the performance is relatively stable, while if the memory horizon
is 1 s, the prediction accuracy plunged during lack of necessary information. Moreover, the experiment result shows
12
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Fig. 10. Example trajectory predicted by the integrated trajectory prediction model.

hat the prediction performance started to decrease more significantly when the prediction/memory horizon increased
o larger than 5s, due to the error propagation, which is a natural phenomenon. We can also find that, in order to
chieve better performance for long-term prediction, a larger memory horizon is more favored. As an illustration, an
xample of trajectory prediction with different prediction horizons given m = 5 s is shown in Fig. 10. In Fig. 10, the
emory horizon is fixed as 5 s, and we plot the trajectories predicted by our model with different prediction horizons to
emonstrate the ability of our model for giving both shorter and long-term accurate predictions. In conclusion, the results
rom this experiment show that our integrated trajectory prediction model can solve both short term prediction and long
erm prediction. This means that our model can effectively learn both features for short term prediction and long term
rediction.

. Conclusion

In this paper, an integrated two dimensional trajectory prediction model is proposed to capture the joint behaviors
f car following and lane change. Differed from the state of art approaches, which largely treat these two motions
s independent processes, our model is specifically designed in an integration framework to model the dependencies.
e firstly systematically formulate the above mentioned problem, based on which a special designed deep neural
etwork with a switch structure utilizing the TCN layer, BiLSTM, and the attention mechanism is constructed. The switch
omponent aims to determine the prediction mode with/without lane change.
Experiments are conducted to evaluate and validate our proposed model and the effectiveness of the specially designed

eep neural network. Firstly, we conducted a model performance experiment by comparing our model with the baseline
ethods using both quantitative and qualitative evaluation methods. The experimental results show that the proposed

ntegrated two dimensional trajectory prediction model has a better prediction performance compared with the state of
rt models. The comparison results also validate the effectiveness of each component in our neural network structure.
econdly, we have conducted a prediction/memory horizon sensitivity analysis to give practitioners guidance for the
hoice of these parameters. Further, we can find from the result that our model can make effective short term and long
erm trajectory predictions.

For future work, there are several aspects that can be improved based on this research. Firstly, models for platoon level
rajectory prediction [48] considering the inter-connection between the vehicles in the platoon can be further developed.
econdly, we will further incorporate the heterogeneity of human driving behaviors [49] in our model.Thirdly, we will
ry to investigate the possibility of leveraging insights from fluid dynamics [50,51] to trajectory prediction.
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