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Abstract—In highway scenarios, an alert human driver will
typically anticipate early cut-in/cut-out maneuvers of surrounding
vehicles using visual cues mainly. Autonomous vehicles must antic-
ipate these situations at an early stage too, to increase their safety
and efficiency. In this work, lane-change recognition and prediction
tasks are posed as video action recognition problems. Up to four
different two-stream-based approaches, that have been successfully
applied to address human action recognition, are adapted here
by stacking visual cues from forward-looking video cameras to
recognize and anticipate lane-changes of target vehicles. We study
the influence of context and observation horizons on performance,
and different prediction horizons are analyzed. The different mod-
els are trained and evaluated using the PREVENTION dataset.
The obtained results clearly demonstrate the potential of these
methodologies to serve as robust predictors of future lane-changes
of surrounding vehicles proving an accuracy higher than 90% in
time horizons of between 1-2 seconds.

Index Terms—Video action recognition, lane change prediction,
surrounding vehicles, autonomous vehicles.

I. INTRODUCTION

ONE of the closest and most plausible scenarios in the
adoption of the autonomous vehicles is autonomous nav-

igation at SAE L3 (chauffeur) or L4 (autopilot) on highways,
both for passenger and freight transport. This is mainly due to
the maturity of one of the first driver assistance technologies:
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Adaptive Cruise Control (ACC) systems. They were introduced
in the early 1990 s and are present in a wide range of passenger
vehicles today [1]. ACC systems focus on maintaining a desired
speed selected by the driver or maintaining the distance between
the car in front and the ego car. Newer versions introduced Stop
& Go functionality. But the steering wheel must be controlled
manually (L1).

The next step in automation were the Traffic Jam Assist (TJA)
and the Traffic Jam Chauffeur (TJC) that combines the ACC
Stop & Go and Lane Keeping Assist functions to control the
steering wheel, speed, acceleration and braking of the vehicle in
traffic jams up to speeds typically below 60 km/h. TJA is usually
considered as L2 and TJC as L3 [2].

Finally, the most advanced automation systems to date are
the Highway Chauffeur (HC) and the Highway Autopilot (HA),
which includes the management of complex maneuvers such as
deciding to change lanes to overtake, enter a slower lane or even
exit the highway. HC is mostly considered as L3 and HA as
L4 [2].

In all previous systems, from the simple ACC to the most
sophisticated HA, the most critical, and challenging, highway
scenarios are the cut-in and cut-out ones, specially for high
speeds. In the cut-in scenario, a car from one of the adjacent lanes
merges into the lane just in front of the ego car. In the cut-out
scenario, a car in front leaves the lane abruptly to avoid a slower
vehicle, or even stopped, ahead. Since 2018, the performance
of these assistance or chauffeur commercial systems operating
under these two critical traffic scenarios is being tested by Euro
NCAP [3]. Although there are abnormal behaviors that can also
lead to critical situations on highways, and that are of interest
to driving automation systems, such as sudden stops, abnormal
trajectories or collisions, the amount of data available is still very
limited to develop, validate and certify potential approaches.

An alert driver will typically anticipate cut-in and cut-out
maneuvers, even over long distances, using only visual cues,
reduce speed accordingly, or even change lanes through the
use of the steering wheel. An automated system must also
be able to anticipate these situations at an early stage. To do
so, it is necessary to endow new automated systems with the
ability of predicting the motions of surrounding vehicles, such
as lane-keeping and lane-change, and thus improving driving
performance significantly in terms of safety, comfort, and even
environmental sustainability [4], [5].

The first Lane Departure Warning (L0) or Lane Change/Lane
Keeping Assist systems (L1) were designed to detect, or
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Fig. 1. Overview of the proposed video action recognition approaches for
lane change recognition and prediction of surrounding vehicles, including Two-
Stream Network, Two-Stream Inflated 3D ConvNet, Spatiotemporal Multiplier
Network and SlowFast Network.

even predict, lane departure of the ego vehicle by combining
visual cues (lane markings and lane texture) and vehicle-
state information (CAN bus) [6]. Although there is some am-
biguity in the available literature, ego-vehicle lane change
detection systems differ considerably from surrounding vehicle
lane change detection systems. The requirements for sensors are
very different, as are the applicable methodologies. For example,
the pixel resolution available to detect the position of vehicles
relative to their lane is much lower. Solutions require vehicle de-
tection and tracking. Relative distance and speed measurements
require radar or LiDAR type range sensors, and yet, uncertainty
of the measurements is much more relevant. Vehicle-state infor-
mation (e.g., accelerations), can only be accurately obtained via
V2V communications [7].

To deal with lane-change prediction of surrounding vehicles,
in this paper we pose the problem as an action recognition prob-
lem using visual information from cameras. The idea behind our
proposal is to use the same source of information (visual cues)
and the same type of approach (action recognition) that drivers
use to anticipate these maneuvers. By using a spatio-temporal
model based on image sequences (i.e., continuous visual cues)
our approach implicitly includes positional, contextual, and
symbolic information, such as turn or brake indicators. Although
there are some drivers who do not use them (i.e., a system based
solely on their detection would not be effective), in general they
are a very valuable source of visual information.

Significant progress has been made in video-based human
action recognition and prediction during the last years [8].
Action recognition and prediction involves managing spatial
and temporal information (sequence of images). Among the
different methodologies, we focus our efforts in the following
two-stream-based approaches (see Fig. 1):
� Two-Stream Convolutional Networks [9]: a classical ar-

chitecture that contains a spatial network and a temporal
network (two streams), which are used for modeling static
information in still frames and motion information in op-
tical flow images, respectively.

� Two-Stream Inflated 3D Convolutional Networks
(I3D) [10]: an extension of the classical two-stream
architecture which expand filters and pooling kernels
into 3D, leading to very deep, naturally spatiotemporal
classifiers.

� Spatiotemporal Multiplier Networks [11]: a two-stream
architecture that combines appearance and motion path-
ways and allows interaction between them by injecting
cross-stream residual connections.

� SlowFast Networks [12]: a two-stream architecture involv-
ing a slow pathway that operates at low frame rate to capture
spatial semantics and a fast pathway that operates at high
frame rate to capture motion at fine temporal resolution.

Although there are other works focused on learning spa-
tiotemporal features for video activity recognition, the selected
approaches are a good example of the evolution of the two-
stream-based systems, including the first successful proposal [9]
and the one ranked first [12] in the AVA Challenge 2019 [13].
Beyond our previous preliminary work [14], to the best of
our knowledge, this is the first proposal using video action
recognition approaches to deal with lane-change recognition and
prediction of surrounding vehicles for automated vehicles.

To validate these approaches in this context, we make use of
The PREVENTION dataset [15] which provides a large number
of accurate and detailed annotations of vehicles categories,
trajectories and events (including left/right lane changes, among
others). More than 356 minutes, 4 M vehicle detections and
3 K trajectories are available, with data collected from LIDAR,
radar and camera sensors, from surrounding vehicles up to a
range of 80 meters. Contours and bounding boxes are available
as raw output detections, as well as a temporary integration of
the detections.

The aforementioned architectures are adapted to deal with
lane change action recognition and prediction. An extensive
evaluation is performed in this paper. The amount of context
information needed to model the interactions between different
vehicles and other features implicitly included in the appearance,
such as the number of lanes or the road curvature, is studied
using different sizes for the regions of interest. The ability of
the networks to perform action recognition and prediction is
assessed using different time horizons and training strategies.
The obtained results clearly validate the use of these type of
approaches to solve the lane-change prediction problem of sur-
rounding vehicles.

The remainder of the paper is organized as follows. In Sec-
tion II, the related work is presented, whereas Section III is
an overview of the problem formulation. In Section IV the im-
plementation of the action recognition approaches is described.
In Section V the evaluation metrics, and the performance of
the different approaches are assessed. The final conclusions and
future work are given in Section VI.

II. RELATED WORK

Most of the available work on lane-change recognition and
prediction focuses on in-vehicle detection. However, as stated
before, the nature of the problem is considerably different,
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so we limit our analysis of lane-change detection of other
vehicles, and more specifically, within the context of the high-
way scenario. Vehicle and lane markings detection and track-
ing [16] are necessary conditions. However, it is reasonable to
consider them as separated problems that are independent of the
maneuver recognition system.

Three levels of analysis will be considered. First, we will
review the type of input features used. Second, we will focus on
the different types of methodologies. Finally, we will describe
the available datasets and their main features.

A. Input Variables

Most of the works analyzed are based on the use of phys-
ical variables that define the relative dynamics of the vehi-
cle with other vehicles and with its environment [17]–[31].
Some of these variables are lateral and longitudinal position
(distances), velocity, acceleration, timegap, heading angle and
yaw rate. These variables are usually obtained and processed
in a multi-modal fashion, by fusing data from onboard sen-
sors such as cameras and range sensors (radar and/or LiDAR).
Errors and uncertainties in the estimation of these variables
from the raw data lead to additional limitations. We can expect
reasonably accuracy when measuring the position and relative
velocities of other vehicles using onboard sensors. However,
it is unrealistic to handle accurate measurements of variables
such as lateral and longitudinal accelerations, yaw angle, or
yaw rate. As an example, we refer to [32] to see the intrin-
sic difficulty of obtaining accurate speed measurements from
static cameras. Sensor uncertainties are intrinsically modeled
in some approaches [17], [30], but even so, we cannot expect
them not to affect predictions. In some cases it is assumed that
these variables will be available via V2V communications [20],
but this scenario requires a 100% penetration rate, and in that
case, predicting the intentions of other vehicles would be un-
necessary as the vehicles could transmit their intentions. In
addition, V2V communications pose a number of additional
problems to consider [33]. In any case, we are still far from this
scenario.

Context cues are also introduced, including road-level fea-
tures such as the curvature and speedlimit [19], [21], [30],
distance to the next highway junction [23], number of lanes [29],
etc., as well as lane-level features such as type of lane mark-
ing or the distance to lane end [23]. These variables are in-
ferred and processed from camera sensors, localization sys-
tems and enhanced digital maps, and are also subject to er-
rors and uncertainties that will affect detection and prediction
performance.

The number of proposals making use of appearance features
to perform lane change recognition or prediction is surprisingly
low (excluding vehicle and lane markings detection which are
common features in all approaches), especially considering that
human drivers do not use the physical variables mentioned above
to anticipate lane changes from other vehicles but visual cues.
In [34] the position of the vehicle bounding box in the image
(in pixels) is used, but no appearance features are extracted.
This approach is very sensitive to camera position, orientation

and settings. In [30], two variables manually selected from
the appearance, i.e., state of turn indicators and state of brake
indicators, are used. Likewise, these variables are obtained from
a specific detection system that involves errors and uncertainties
that will affect later stages. But the main limitation of systems
that explicitly seek to detect turn indicators is that in many
cases drivers do not make use of them when changing lanes.
In our previous works [35], [36] regions of interest (ROIs) are
generated for each vehicle detection, including local information
around the vehicle, and appearance features are extracted using a
GoogLeNet pre-trained on ImageNet. Using the raw image data
(appearance) as input to the lane change detection and predic-
tion system is challenging, but has the benefit of not requiring
intermediate detection steps that can introduce additional errors
and uncertainties.

B. Methodologies

As suggested by [37] vehicle motion modeling and predic-
tion approaches can be classified into three different levels:
physical-based, where predictions only depend on the laws of
physics, maneuver-based, where the future motion of a vehicle
depends on the driver maneuver, and intention-aware, where
predictions take into consideration inter-dependencies between
vehicles. Note that, as a chicken-egg problem, on the one hand,
lane-change recognition can be addressed using the trajectory
estimated by any of the motion models [38], and on the other
hand, the prediction of the trajectories of surrounding vehicles
can be estimated more accurately if the lane-change intention
recognition is available.

Some proposals are intention-aware in their nature. For exam-
ple, by using graphical models such as Bayesian Networks [17],
[23], [30] or Structural Recurrent Neural Networks [29], or by
using convolutional social pooling in an LSTM encoder-decoder
architecture [28]. However, in most cases, inter-dependencies
between vehicles are modeled by extracting relative physical
features (distances, velocities or time-gaps) [19], [21], [25],
[27] or by generating compact representations that encode the
relative positions of all vehicles on the scene [26], [35], [36].
A considerable number of previous works do not take into
consideration the interaction between vehicles [18], [20], [22],
[31], [34].

Many approaches to lane-change recognition and prediction
address the problem using generative-based solutions, including
Naïve Bayes Classifiers [19], Bayesian Networks [17], [23],
[30], and Hidden Markov Models [20]. Others make use of
discriminative solutions such as case-based reasoning [18], Ran-
dom Decision Forest [21], traditional Neural Networks [22],
[24], Support Vector Machines [24], [25], [34], Gaussian Pro-
cess Neural Networks [31], and feedforward Convolutional
Neural Networks [26], [35], [36]. Finally, some other ap-
proaches are based on the use of Recurrent Networks includ-
ing vanilla LSTM [35] and LSTM encoder-decoder [27] and
multi-modal [28] architectures. Consequently, two-stream ar-
chitectures have not been proposed so far to perform lane change
detection and prediction.
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Fig. 2. Problem formulation: observation horizon (N), and time to event (TTE). The lane change event is labeled as the frame where the middle of the rear bumper
is located just over the lane markings. This is the criterion established in PREVENTION dataset [15].

C. Datasets

In order to train learning-based approaches and validate the
quality of the proposed solutions, available datasets play a
fundamental role. Two type of recording setups are usually
proposed depending on the location of the sensors. First, we have
datasets captured from the infrastructure using cameras installed
on buildings, such as NGSIM HW101 [39] or NGSIM I-80 [40]
datasets, or cameras on-board drones, such as HighD [41],
inD [42] or INTERACTION [43] datasets. Although these
datasets are very valuable for understanding and assessing the
motion and behavior of vehicles and drivers under different
traffic scenarios, they are not fully applicable for on-board
detection applications.

Second, other datasets provide road data with sensors on-
board vehicles. In this line, the PKU dataset [44] was released
in 2017 by Peking University and the PSA Group, containing
170 minutes of data gathered using a vehicle equipped with
4 2D-LiDARs covering a region of 40 meters around the ve-
hicle. It does not contain information regarding the road lane
markings, the number of road lanes, or the relative positioning
of the ego-vehicle. In 2018, the ApolloScape dataset [45] was
released by Baidu Research, containing data obtained in urban
environments from 4 cameras and 2 Laser scanners using a
vehicle driving at 30 km/h. It is currently one of the most
complete datasets in the state-of-the-art but it does not con-
tain radar data, making detections more sensitive to failure in
adverse weather conditions and highway scenarios. In addi-
tion, it does not provide labeled tracking information (IDs and
tracklets) for all detected objects. In 2019, the PREVENTION
dataset [15] was released containing data from 3 radars, 2
cameras and 1 LiDAR, covering a range of up to 80 meters
around the ego-vehicle (up to 200 meters in the frontal area).
Road lane markings are included and the final position of the
vehicles is provided by fusing data from the three type of
sensors.

III. PROBLEM FORMULATION

We define lane change prediction as a multi-classification
problem in which the goal is to determine whether a vehicle i
will make a left or right lane-change (LLC, RLC) or remain in its
lane (no lane change) given the observed context up to some time
N . As can be seen in Fig. 2, the lane-change event is defined as
the time when the center of the rear bumper is just above the lane
markings. Therefore, cases with small lateral displacements,
lateral oscillations, or aborted lane change maneuvers (including
unsafe or aggressive behaviors) are contained in the no lane
change class (NLC). Although these are difficult cases that
often result in false positives, false lane change detection and
prediction would not be as critical for the context of predictive
driving automation systems as they can anticipate dangerous
situations in which the safest control actions would be the same
as in the case of actual lane changes.

The observation horizon or time window will contain a set
of N images that will be stacked according to the activity
recognition method used.

Then, the problem can be posed as a classification or predic-
tion problem based on the value of the Time to Event (TTE),
or prediction horizon, as follows:
� Lane-change classification: when TTE = 0. That is, the

observation horizon contains part of the lane change ma-
neuver itself for the LLC and RLC classes.

� Lane-change prediction: when TTE > 0. Depending on
the TTE value, the observation horizon will contain more
or less information of the actual lane change maneuver
for LLC and RLC classes. For very high TTE values the
maneuver may not even have started. Still, contextual or
symbolic information can help anticipate lane changes in
these cases.

We will examine the effects of TTE or prediction horizon
and observation duration (N ) on the accuracy of lane-change
classification and prediction.
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Fig. 3. ROI sizes. From upper row to lower row: x1, x2, x3 and x4. The vehicle
is always centered. Zero-padding is applied when needed.

Fig. 4. Example of dense optical flow computation.

The prediction relies on visual cues that are computed from
regions of interest (ROI) extracted from the contour labels pro-
vided in the PREVENTION dataset. Four different ROI sizes are
considered: ×1, ×2, ×3 and ×4 the size of the square bounding
box around the vehicle contour (see Fig. 3). Zero-padding is used
when the ROI exceeds the limits of the image. The size of the ROI
modulates the amount of context information being considered
in the input data stream. Thus, ×1 mostly contains information
related with the vehicle appearance, while ×4 incorporates a
large amount of front and side context information. For ROI
sizes of ×3 and ×4 the approach can be considered interaction-
aware since the image contains information regarding cars in the
same or adjacent lanes. Other variables relevant for lane change
prediction such as the number of lanes, or road curvature, are
implicitly included in the context information.

Since the vehicle is always centered in the ROI, dense optical
flow (from the motion stream) should be interpreted as a way
of measuring the movement of the context (infrastructure and
other vehicles) around the detected vehicle. As shown in Fig. 4,
the optical flow is low in the region where the vehicle is, while
it is more predominant around it.

IV. VIDEO ACTIVITY RECOGNITION & PREDICTION

The sequence of stacked images or regions of interests, can
naturally be decomposed into spatial and temporal components.
The spatial part, in the form of individual region appearance,
carries information about the vehicle itself (e.g., light indicators
or brake lights) and the context around it (road, lane markings

and surrounding vehicles). The temporal part, in the form of
motion across frames, conveys the movement of the observer
(onboard camera) w.r.t. to the road, and the surrounding vehicles.
In order to handle a canonical view for the motion stream, all the
regions are generated around the contour of the vehicle so the
vehicle is always centered in the region of interest (the size will
vary depending on the relative distance w.r.t. the ego vehicle).
We consider four video activity recognition approaches: Disjoint
Two-Stream Convolutional Networks (TS) [9], Two-Stream In-
flated 3D Convolutional Networks (I3D) [10], Spatiotempo-
ral Multiplier Networks (STM) [11] and SlowFast Networks
(SF) [12].

A. Disjoint Two-Stream Convolutional Networks

A two-stream ConvNet architecture which incorporates and
fuses spatial and temporal information is defined. The structure
of the ConvNets for both streams is the same, including 5 convo-
lutional layers and 3 fully connected layers, with the parameters
depicted in Fig. 5. The last fully connected layer is defined with
3 outputs regarding the three classes defined: left lane change
(LLC), right lane change (RLC), and no lane change (NLC).

The dense optical flow is computed using polynomial ex-
pansion [46]. The spatial stream ConvNet is pre-trained using
ImageNet and the temporal ConvNet using multi-task learning
using UCF-101 and HMDB-51. All hidden layers use the recti-
fication (ReLU) activation function. Max-pooling is performed
over 3× 3 spatial windows with stride 2.

B. Two-Stream Inflated 3D Convolutional Networks

The natural approach to deal with video modeling is to use 3D
convolutional neural networks. These are like standard convo-
lutional networks, but with spatio-temporal filters that generate
a hierarchical representation of spatio-temporal data. These are
more complex architectures with a higher number of parameters
that cannot easily benefit of pre-training strategies. We adopt the
approach presented in [10] which starts with a 2D architecture
and inflates all the filters and pooling kernels endowing them
with an additional temporal dimension. Each 3D network is
implemented with 8 convolutional layers, 5 pooling layers and 2
fully connected layers at the top. Batch normalization is applied
after all convolutional and fully connected layers. The 3D filters
are bootstrapped from pre-trained ImageNet models by repeat-
edly copying an image into a video sequence. A two-stream
configuration is used (see Fig. 6), learning temporal patterns
from the appearance stream, but enhancing its performance by
including the motion stream. The inputs to the model are short
16-frames sequences.

C. Spatiotemporal Multiplier Networks

The original two-stream architecture only allows the two pro-
cessing streams (spatial and motion) to interact via late fusion of
their respective softmax predictions. This way, the architecture
does not support the learning of truly spatiotemporal features,
since the loss of both streams is backpropagated independently
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Fig. 5. Disjoint two-stream architecture for lane change classification and prediction.

Fig. 6. Two-stream inflated 3D ConvNet for lane change classification and
prediction.

without any type of interaction. Learning spatiotemporal fea-
tures requires the appearance and motion paths to interact earlier
on during the forward pass. This interaction can be relevant for
the classification and prediction of lane change maneuvers that
have similar appearance or motion patterns and can only be
inferred by the combination of two (e.g., vehicles that do not
change lanes but have their turn indicators on). To address this
limitation, it is possible to inject cross-stream residual connec-
tions using Residual Networks (ResNets) [47] as the general
architecture for the spatial and the temporal streams.

In [11], different cross-stream connections were studied, in-
cluding two types of connections (direct or into residual units),
two fusion functions (additive or multiplicative), and different
streams directions (unidirectional from the motion into the ap-
pearance, conversely and bidirectional), being the multiplicative
residual connection from the motion path into the appearance
stream the one providing the superior performance.

As can be observed in Fig. 7, the multiplicative interaction
can be formulated as:

x̂a
l+1 = f(xa

l ) + F (xa
l � f(xm

l ),W a
l ) (1)

where xa
l and xm

l are the inputs of the l-th layers of the appear-
ance and motion paths respectively, while W a

l represents the

Fig. 7. Multiplicative residual gating from the motion stream to the appearance
stream.

weights of the l-th layer residual unit in the appearance stream
and � corresponds to elementwise multiplication.

Better temporal support is also provided by injecting 1D
temporal convolutions layers into the network [11]. ResNet50
model is used for both streams, including batch normalization
and ReLU activation function after each convolutional block.

D. SlowFast Networks

One of the most successful video action recognition ap-
proaches is the so called SlowFast network [12]. It can be consid-
ered as a two-stream approach, although motion pathway is not
directly used. Instead, one stream (slow) is designed to capture
semantic information given by a few sparse images operating at
low frame rates and slow refreshing speed, and a second stream
(fast) is responsible for capturing rapidly changing motion by
operating at high temporal resolution and fast refreshing speed.
The two pathways are fused by lateral connections. The temporal
stride used in the Slow pathway is τ = 16 and the frame rate
ratio between the Fast and Slow streams is α = 8. The ratio
of channels of the Slow stream with respect to the Fast one is
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Fig. 8. SlowFast network for lane change recognition and prediction. The fast
stream is lightweight by using a fraction β = 1/8 of channels.

TABLE I
MAIN STATS OF THE DATASET. NLC/LLC/RLC: NO/LEFT/RIGHT

LANE-CHANGE

defined as β = 1/8 (see Fig. 8). The network is defined with one
convolutional layer, five residual blocks and one fully connected
layer adapted to the number of classes as in [12]. Since optical
flow is not computed, the architecture can be learned end-to-end
from the raw data.

V. EXPERIMENTS

A. Dataset Description

Table I summarizes the details of the dataset. The input size
for both streams is 112× 112. The 85% of the samples are used
for training and the remaining 15% for validation.

B. Evaluation Parameters and Models

The following parameters have been evaluated during the
experiments:
� ROI sizes: x1, x2, x3 and x4.
� Observation horizon: 20 frames (2 seconds), 30 frames (3

seconds) and 40 frames (4 seconds).
� Time-to-event (prediction horizon): 0 (no prediction), 10

(1 s) and 20 (2 seconds).
The evaluated video recognition models are the Disjoint

Two-Stream ConvNet (Disjoint), the Two-Stream Inflated 3D
ConvNet (I3D), the Spatiotemporal Multiplier ConvNet (ST),
and the SlowFast ConvNet (SF). A basic model which imple-
ments the appearance stream of the Disjoint architecture (upper
pathway in Fig. 5) is used as the baseline (Baseline). In all cases,
the specific architecture of the models and the hyper-parameters
used for training are those reported as optimal by the authors.

C. Metrics

As a multi-class problem (with 3 classes), we use the cat-
egorical entropy loss function for the training. For evaluat-
ing the results, we consider the accuracy as the main vari-
able to assess the performance of the two evaluated methods
and the corresponding parameters, i.e., the number of true

TABLE II
LANE-CHANGE CLASSIFICATION (TTE = 0) ACCURACY (%)

positives for the three classes divided by the total number
of samples (arithmetic mean of precision for all classes). In
addition, we evaluate precision and recall for all classes in
confusion matrices.

D. Lane-Change Classification Results

In Table II we depict the lane-change classification (i.e., with
TTE = 0) accuracy of all action recognition approaches over
the validation set.

Regarding the ROI sizes we can state the following conclu-
sions. By using just the ROI fitted to the bounding box, the
results are surprisingly reasonable, considering that almost no
context and interaction are available. In general, the higher
the ROI size, the better the accuracy (with the exception of
the I3D model), although adding more context from x3 to
x4 decreases the performance for most cases and observation
horizons. This can be explained by the fact that the observation
horizons already incorporate context into the spatial, motion and
slow streams, so using a higher ROI is not reflected in a better
performance.

The effect of the observation horizon depends on the model.
For example, the Disjoint and the Spatiotemporal models yield
the best classification performance with the longest observation
horizon (4 seconds). However, the I3D and the SlowFast archi-
tectures have a higher accuracy with the shortest observation
horizon (2 seconds). For the classification task, the last frames
are the most informative, and these models (I3D and SlowFast)
seem to take better advantage of this information without the
need for a larger observation horizon.

The best classification results, 90.98%, are provided by the
SlowFast model with a ROI size of x3 and an observation
horizon of 2 seconds, followed by the Spatiotemporal Multiplier
Network, 90.30% with a ROI size of x3 and an observation
horizon of 4 seconds.

E. Lane-Change Prediction Results

The ability of all methodologies to predict the future lane-
change maneuverer of target vehicles is evaluated using an
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TABLE III
LANE-CHANGE PREDICTION ACCURACY (%). OBSERVATION HORIZON = 20

FRAMES (2 SECONDS)

*Inconclusive results due to GPU memory limitations.

TABLE IV
SPATIOTEMPORAL MULTIPLIER NETWORK CONFUSION MATRIX, OH=20,

TTE=20, X4

observation horizon of 20 frames (2 seconds) and prediction
horizons of 10 and 20 frames (1 and 2 seconds respectively).
The results for all approaches are depicted in Table III.

Starting from the baseline, and with the exception of the
I3D model, it is remarkable to see that predictions are better
for longer prediction horizons, i.e., the obtained accuracy for
TTE = 20 frames is generally higher than for a TTE = 10
images. This can be explained, in part, by the complexity of the
models that better generalize with a more complex objective to
learn. This effect is particularly visible with the Disjoint and ST
models, where the accuracy is approximately 5% higher when
predicting 2 seconds ahead than 1 s ahead.

Concerning the ROI size we can state that the larger the ROI
the better the prediction accuracy, with no saturation effect from
x3 to x4. The best performance when predicting lane-changes
1 s before they occur is obtained with the SlowFast model
with a ROI size of x2, yielding an accuracy of 88.96%. For
the larger prediction horizon, 2 seconds, the best model is the
Spatiotemporal Multiplier network, which provides an accuracy
of 91.94% with a ROI size of x4. Note that, the results of
the SlowFast model for this case are inconclusive due to GPU
memory problems. Whereas the mini-batch size for the other
models was 32, the maximum size allowed with the SlowFast
model was only 8. It is very likely that without this limitation,
the SlowFast model would have provided even better results.

If we analyze the results further, we find that the predictions
are closely linked to the number of samples available for each
class. In fact, as shown in Table I, we have an unbalanced dataset
which clearly affects the results. In Table IV we depict the
confusion matrix for the best model (Spatiotemporal Multiplier
Network) and the best parameters (x4, TTE = 20) including
precision and recall.

As can be observed, the highest precision/recall ratio is ob-
tained for the NLC class which represents almost the 80% of the
samples. This correlation between the accuracy and the number
of samples is also observed between the LLC and RLC classes,
with a better precision/recall ratio for RLC class which contains
28% more samples than LLC. Some of the false positives for
the LLC and RLC classes are due to instances of small lateral
displacements, or aborted lane change maneuvers. However, the
number of samples for these cases is not significant enough to
draw further conclusions.

In any case, these are ones of the first prediction results so far
using the PREVENTION dataset and the ability of the proposed
two-stream multiplier network to predict lane-changes 2 seconds
of anticipation is remarkable compared to the ability of humans
trying to perform the same task (see [48] and [36] for more
details on human performance).

VI. CONCLUSION AND FUTURE WORK

In this work, four video action recognition approaches have
been adapted, trained and evaluated to deal with lane-change
classification and prediction of target vehicles in highway sce-
narios using the labeled images and sequences available in
the PREVENTION dataset. The anticipation of lane-changes
is devised as an action recognition problem using visual cues
from front view cameras, which is the same approach used
by human drivers to predict these maneuvers. The Disjoint
Two-Stream ConvNets (Disjoint), the Two-Stream Inflated 3D
ConvNets (I3D), and the Spatiotemporal Multiplier ConvNets
(ST) are based on two different pathways obtained from the same
sequence of images: a spatial stream in the form of individual
region appearance, and a motion stream in the form of dense
optical flow across frames. The SlowFast ConvNet (SF) is based
on two different pathways obtained from the appearance, but
taken with two different sampling frequencies (one fast and one
slow).

The influence of the context has been evaluated by using dif-
ferent ROI sizes, being the larger regions (x3 and x4 the original
size of the vehicle) the ones providing the better classification
and prediction results. For lane-change recognition, different
observation horizons have been tested. Whereas the Disjoint
and the ST models yield the best results with the longest ob-
servation horizon, the SF network provides the best recognition
performance (91%) using visual cues from the shortest obser-
vation horizon evaluated, 2 seconds. The I3D model slightly
outperforms the baseline, but its classification performance is
lower than the rest.

The ability of most of these models (Disjoint, ST and SF)
to predict lane-changes at t+ TTE is even better than their
ability to classify them at t, which is a remarkable feature that
can be partially explained by the high complexity of the models
that provide better generalization with a more complex objective
to learn. The best prediction results are obtained with the ST
model with ROI size of x4 and observation horizon of 2 seconds,
anticipating lane-changes 2 seconds earlier with an accuracy of
63.5% for left lane-changes, of 72.5% for right lane-changes and
of 97.7% for no lane-change.
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The presented video action recognition approaches are highly
data-dependent, and the number of publicly available datasets is
limited. As future works we plan to mitigate the problem with
imbalanced classes of the dataset by applying resampling and
data augmentation techniques, including generative adversarial
networks (GANs) [49]. Other available and new datasets will
be considered to alleviate this problem, to reduce potential
bias and to analyze the generalization capabilities of action
recognition methods. In cases where synchronized data from
multiple sensors are available, the study of data fusion tech-
niques will be addressed to overcome possible limitations of the
vision-based method. GPUs memory limitations with models
such as SlowFast will be also addressed. Other interesting topics
to explore are the impact of lighting and weather conditions on
system performance, and the potential ability of the system to
explicitly detect and differentiate turn signals and brake lights
(e.g., to assess whether or not a driver is correctly signaling an
intention to change lanes). Finally, a real-time version will be
devised to be tested in on-line real scenarios with our vehicle
platforms.

REFERENCES

[1] L. Xiao and F. Gao, “A comprehensive review of the development
of adaptive cruise control systems,” Veh. Syst. Dyn., vol. 48, no. 10,
pp. 1167–1192, 2010.

[2] ERTRAC, “Connected automated driving roadmap,” Mar. 8, 2019. [On-
line]. Available: https://www.ertrac.org/uploads/documentsearch/id57/
ERTRAC-CAD-Roadmap-2019.pdf

[3] EuroNCAP, “2018 automated driving tests,” Oct. 2018. [Online].
Available: https://www.euroncap.com/en/vehicle-safety/safety-
campaigns/2018-automated-driving-tests/

[4] Y. Liu, Z. Wang, K. Han, Z. Shou, P. Tiwari, and J. Hansen, “Vision-cloud
data fusion for ADAS: A lane change prediction case study,” IEEE Trans.
Intell. Veh., to be published, doi: 10.1109/TIV.2021.3103695.

[5] D. Fernandez-Llorca and E. Gomez-Gutierrez, “Trustworthy autonomous
vehicles,” EUR 30942 EN, Publications Office Eur. Union, Luxembourg,
no. JRC127051, 2021.

[6] J. McCall and M. M. Trivedi, “Video-based lane estimation and tracking
for driver assistance: Survey, system, and evaluation,” IEEE Trans. Intell.
Transp. Syst., vol. 487, no. 1, pp. 20–37, Mar. 2006.

[7] I. Parra, H. Corrales, N. Hernández, S. Vigre, D. F. Llorca, and M. A.
Sotelo, “Performance analysis of vehicle-to-vehicle communications for
critical tasks in autonomous driving,” in Proc. IEEE Intell. Transp. Syst.
Conf., 2019, pp. 195–200.

[8] Y. Kong and Y. Fu, “Human action recognition and prediction:
A survey,” Int. J. Comput. Vis., vol. 130, pp. 1366–1401, 2022,
doi: 10.1007/s11263-022-01594-9.

[9] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for
action recognition in videos,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 27, 2014, pp. 568–576.

[10] J. Carreira and A. Zisserman, “Quo Vadis, action recognition? A new
model and the kinetics dataset,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2017, pp. 6299–6308.

[11] C. Feichtenhofer, A. Pinz, and R. P. Wildes, “Spatiotemporal multiplier
networks for video action recognition,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 4768–4777.

[12] C. Feichtenhofer, H. Fan, J. Malik, and K. He, “SlowFast networks for
video recognition,” in Proc. IEEE Int. Conf. Comput. Vis., 2019, pp. 6202–
6211.

[13] C. Gu et al., “AVA: A video dataset of spatio-temporally localized atomic
visual actions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2017, pp. 6047–6056. [Online]. Available: https://research.google.com/
ava/challenge.html

[14] D. F. Llorca, M. Biparva, R. Izquierdo, and J. Tsotsos, “Two-stream
networks for lane-change prediction of surrounding vehicles,” in Proc.
IEEE Intell. Transp. Syst. Conf., 2020, pp. 1–6.

[15] R. Izquierdo, A. Quintanar, I. Parra, D. Fernández-Llorca, and M. A.
Sotelo, “The prevention dataset: A novel benchmark for prediction of
vehicles intentions,” in Proc. IEEE 22nd Int. Conf. Intell. Transp. Syst.,
2019, pp. 3114–3121.

[16] S. Sivaraman and M. M. Trivedi, “Looking at vehicles on the road: A
survey of vision-based vehicle detection, tracking, and behavior analysis,”
IEEE Trans. Intell. Transp. Syst., vol. 14, no. 4, pp. 1773–1795, Dec.
2013.

[17] D. Kasper et al., “Object-oriented Bayesian networks for detection of
lane change maneuvers,” IEEE Intell. Transp. Syst. Mag., vol. 4, no. 3,
pp. 19–31, Aug. 2012.

[18] R. Graf, H. Deusch, M. Fritzsche, and K. Dietmayer, “A learning concept
for behavior prediction in traffic situations,” in Proc. IEEE Intell. Veh.
Symp., 2013, pp. 672–677.

[19] J. Schlechtriemen, A. Wedel, J. Hillenbrand, G. Breuel, and K.-D. Kuhnert,
“A lane change detection approach using feature ranking with maximized
predictive power,” in Proc. IEEE Intell. Veh. Symp., 2014, pp. 108–114.

[20] P. Liu, A. Kurt, and U. Ozguner, “Trajectory prediction of a lane changing
vehicle based on driver behavior estimation and classification,” in Proc.
IEEE 17th Int. Conf. Intell. Transp. Syst., 2014, pp. 942–947.

[21] J. Schlechtriemen, F. Wirthmueller, A. Wedel, G. Breuel, and K.-D. Kuh-
nert, “When will it change the lane? A probabilistic regression approach
for rarely occurring events,” in Proc. IEEE Intell. Veh. Symp., 2015,
pp. 1373–1379.

[22] S. Yoon and D. Kum, “The multilayer perceptron approach to lateral
motion prediction of surrounding vehicles for autonomous vehicles,” in
Proc. IEEE Intell. Veh. Symp., 2016, pp. 1307–1312.

[23] M. Bahram, C. Hubmann, A. Lawitzky, M. Aeberhard, and D. Wollherr,
“A combined model- and learning-based framework for interaction-aware
maneuver prediction,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 6,
pp. 1538–1550, Jun. 2016.

[24] R. Izquierdo, I. Parra, J. M. Noz Bulnes, D. Fernández-Llorca, and M.
A. Sotelo, “Vehicle trajectory and lane change prediction using ANN and
SVM classifiers,” in Proc. IEEE 20th Int. Conf. Intell. Transp. Syst., 2017,
pp. 1–6.

[25] W. Yao et al., “On-road vehicle trajectory collection and scene-based lane
change analysis: Part II,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 1,
pp. 206–2220, Jan. 2017.

[26] D. Lee, Y. P. Kwon, S. McMains, and J. K. Hedrick, “Convolution neural
network-based lane change intention prediction of surrounding vehicles
for ACC,” in Proc. IEEE 20th Int. Conf. Intell. Transp. Syst., 2017,
pp. 1–6.

[27] N. Deo and M. M. Trivedi, “Multi-modal trajectory prediction of sur-
rounding vehicles with maneuver based LSTMs,” in Proc. IEEE Intell.
Veh. Symp., 2018, pp. 1179–1184.

[28] N. Deo and M. M. Trivedi, “Convolutional social pooling for vehicle
trajectory prediction,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
Workshops, 2018, pp. 1468–1476.

[29] S. Patel, B. Griffin, K. Kusano, and J. J. Corso, “Predicting future lane
changes of other highway vehicles using RNN-based deep models,” 2019,
arXiv:1801.04340v4.

[30] J. Li, B. Dai, X. Li, X. Xu, and D. Liu, “A dynamic Bayesian network for
vehicle maneuver prediction in highway driving scenarios: Framework
and verification,” Electronics, vol. 8, p. 40, 2019, doi: 10.3390/electron-
ics8010040.

[31] M. Kruger, A. S. Novo, T. Nattermann, and T. Bertram, “Probabilistic lane
change prediction using Gaussian process neural networks,” in Proc. IEEE
22th Int. Conf. Intell. Transp. Syst., 2019, pp. 3651–3656.

[32] D. F. Llorca et al., “Two-camera based accurate vehicle speed measurement
using average speed at a fixed point,” in Proc. IEEE 19th Int. Conf. Intell.
Transp. Syst., 2016, pp. 2533–2538.

[33] I. Parra, R. Izquierdo, J. Alonso, A. G. Morcillo, D. F. Llorca, and M.
A. Sotelo, “The experience of DRIVERTIVE-DRIVERless cooperaTIve
VEhicle-team in the 2016 GCDC,” IEEE Trans. Intell. Transp. Syst.,
vol. 19, no. 4, pp. 1322–1334, Apr. 2018.

[34] J. Li, C. Lu, Y. Xu, Z. Zhang, J. Gong, and H. Di, “Manifold learning for
lane-changing behavior recognition in urban traffic,” in Proc. IEEE 22th
Int. Conf. Intell. Transp. Syst., 2019, pp. 3663–3668.

[35] R. Izquierdo, A. Quintanar, I. Parra, D. Fernández-Llorca, and M. A.
Sotelo, “Experimental validation of lane-change intention prediction
methodologies based on CNN and LSTM,” in Proc. IEEE Intell. Transp.
Syst. Conf., 2019, pp. 3657–3662.

[36] R. Izquierdo et al., “Vehicle lane change prediction on highways using
efficient environment representation and deep learning,” IEEE Access,
vol. 9, pp. 119 454–119 465, 2021.

Authorized licensed use limited to: Soonchunhyang Univ. Downloaded on May 09,2024 at 12:41:29 UTC from IEEE Xplore.  Restrictions apply. 

https://www.ertrac.org/uploads/documentsearch/id57/ERTRAC-CAD-Roadmap-2019.pdf
https://www.ertrac.org/uploads/documentsearch/id57/ERTRAC-CAD-Roadmap-2019.pdf
https://www.euroncap.com/en/vehicle-safety/safety-campaigns/2018-automated-driving-tests/
https://www.euroncap.com/en/vehicle-safety/safety-campaigns/2018-automated-driving-tests/
https://dx.doi.org/10.1109/TIV.2021.3103695
https://dx.doi.org/10.1007/s11263-022-01594-9
https://research.google.com/ava/challenge.html
https://research.google.com/ava/challenge.html
https://dx.doi.org/10.3390/electronics8010040
https://dx.doi.org/10.3390/electronics8010040


578 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 7, NO. 3, SEPTEMBER 2022

[37] S. Lefevre, D. Vasquez, and C. Laugier, “A survey on motion prediction
and risk assessment for intelligent vehicles,” ROBOMECH J., vol. 1, no. 1,
pp. 1–14, 2014.

[38] K. Messaoud, I. Yahiaoui, A. Verroust-Blondet, and F. Nashashibi, “Atten-
tion based vehicle trajectory prediction,” IEEE Trans. Intell. Veh., vol. 6,
no. 1, pp. 175–185, Mar. 2021.

[39] J. Colyar and J. Halkias, “NGSIM - US highway 101 dataset,” 2007.
[Online]. Available: https://www.fhwa.dot.gov/publications/research/
operations/07030/

[40] J. Halkias and J. Colyar, “NGSIM - Interstate 80 freeway dataset,” 2006.
[Online]. Available: https://www.fhwa.dot.gov/publications/research/
operations/06137/

[41] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highD dataset:
A drone dataset of naturalistic vehicle trajectories on German highways
for validation of highly automated driving systems,” in Proc. IEEE Intell.
Transp. Syst. Conf., 2018, pp. 2118–2125.

[42] J. Bock, R. Krajewski, T. Moers, L. Vater, S. Runde, and L. Eckstein, “The
IND dataset: A drone dataset of naturalistic vehicle trajectories at German
intersections,” 2019, arXiv:1911.07602.

[43] W. Zhan et al., “INTERACTION dataset: An INTERnational, adversarial
and cooperative moTION dataset in interactive driving scenarios with
semantic maps,” 2019, arXiv:1910.03088.

[44] H. Zhao, C. Wang, Y. Lin, F. Guillemard, S. Geronimi, and F. Aioun, “On-
road vehicle trajectory collection and scene-based lane change analysis:
Part I,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 1, pp. 192–205,
Jan. 2017.

[45] P. Wang, X. Huang, X. Cheng, D. Zhou, Q. Geng, and R. Yang, “The
apolloscape open dataset for autonomous driving and its application,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 10, pp. 2702–2719,
Oct. 2020.

[46] G. Farnebäck, “Two-frame motion estimation based on polynomial expan-
sion,” in Proc. Scand. Conf. Image Anal., vol. 2749, 2003, pp. 363–370.

[47] S. K. He, X. Zhang, and J. Sun, “Deep residual learning for image recog-
nition,” in Proc. IEEE Comput. Vis. Pattern Recognit., 2016, pp. 770–778.

[48] A. Quintanar, R. Izquierdo, I. Parra, D. F. Llorca, and M. A. Sotelo,
“The PREVENTION challenge: How good are humans predicting lane
changes,” in Proc. IEEE Intell. Veh. Symp., 2020, pp. 45–50.

[49] D. Wu, J. Chen, N. Sharma, S. Pan, G. Long, and M. Blumenstein, “Ad-
versarial action data augmentation for similar gesture action recognition,”
in Proc. Int. Joint Conf. Neural Netw., 2019, pp. 1–8.

Mahdi Biparva received the Ph.D. degree in com-
puter science from York University, Toronto, ON,
Canada, in 2019. He is currently a Research and De-
velopment Engineering with Sunnybrook Research
Institute. Between 2013–2019, he was a Teaching
Assistant with York University, and Research Assis-
tant with Lab for Active and Attentive Vision, York
University. His research interests include computer
vision and deep learning approaches for different
tasks in healthcare.

David Fernández-Llorca (Senior Member, IEEE)
received the Ph.D. degree in telecommunication engi-
neering from the University of Alcalá (UAH), Alcala
de Henares, Spain, in 2008. Since November 2020,
he has been a Scientific Officer with European Com-
mission - Joint Research Center, collaborating in the
HUMAINT project. He is a Full Professor (special
leave) with UAH and the Co-Head of the Intelligent
Vehicles and Traffic Technologies research group.
He has authored more than 130 publications and
more than 10 patents. His research interests include

trustworthy AI for autonomous vehicles, predictive perception for autonomous
vehicles, human-vehicle interaction, end-user oriented autonomous vehicles,
and assistive intelligent transportation systems. He was the recipient of the IEEE
ITSS Young Research Award in 2018 and IEEE ITSS Outstanding Application
Award in 2013. He is currently the Editor-in-Chief of the IET Intelligent
Transport Systems. He was an Associate Editor for the IEEE TRANSACTIONS

ON INTELLIGENT TRANSPORTATION SYSTEMS during 2012–2020, and Journal
of Advanced Transportation during 2016–2020. He was the Program Chair of
the IEEE ITSC 2019.

Rubén Izquierdo Gonzalo received the M.S. and
Ph.D. degrees in industrial engineering from the Uni-
versity of Alcalá (UAH), Alcala de Henares, Spain, in
2018 and 2020, respectively. He is currently a Post-
doc Researcher with Intelligent Vehicles and Traffic
Technologies group. His research interests include
predictive prediction for autonomous vehicles and
cooperative autonomous driving. He was the main
Developer of the DRIVERTIVE team that was the
recipient of the Best Team with Full Automation in
the Grand Cooperative Driving Challenge 2016. He

was the recipient of the Social Transfer Council Award UAH in 2018.

John K. Tsotsos (Fellow, IEEE) received the Ph.D.
degree in computer science from the University of
Toronto, Toronto, ON, Canada. He is currently a Dis-
tinguished Research Professor of vision science with
York University, Toronto, ON, Canada. He was on the
Faculty with the Department of Computer Science in
1980, where he founded the university’s Computer
Vision Group, which he led for 20 years. In 2000, he
was recruited to York University as the Director of
the Centre for Vision Research. His research interests
include comprehensive theory of visual attention in

humans. A practical outlet for this theory embodies elements of the theory into
the vision systems of mobile robots. He is a Fellow of the Royal Society of
Canada, has been a CIfAR Fellow, and was the recipient of several paper prizes
and other awards.

Authorized licensed use limited to: Soonchunhyang Univ. Downloaded on May 09,2024 at 12:41:29 UTC from IEEE Xplore.  Restrictions apply. 

https://www.fhwa.dot.gov/publications/research/operations/07030/
https://www.fhwa.dot.gov/publications/research/operations/07030/
https://www.fhwa.dot.gov/publications/research/operations/06137/
https://www.fhwa.dot.gov/publications/research/operations/06137/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


